Hadarics Kálmán

A Debian GNU/Linux, mint
Hálózati operációs rendszer

2009
Tartalomjegyzék

1. Jogi nyilatkozat, támogatás ... 6
2. Bevezetés ... 7
3. A Debian GNU/Linux ... 8
 3.1. A disztribúció eredete és jellemzői ... 8
 3.2. A Debian szabad szoftverekre vonatkozó irányelvei (Debian Free
 Software Guidelines – DFSG) ... 8
 3.3. „Társadalmi szerződés” a Szabad szoftver közösséggel 9
 3.4. Debian - Az univerzális operációs rendszer 10
 3.5. A Debian GNU/Linux verziói ... 10
4. A Debian GNU/Linux telepítési folyamata .. 12
 4.1. Előkészület a telepítésre ... 12
 4.1.1. A telepítéshez szükséges információk 12
 4.1.2. A telepítés célja ... 13
 4.1.3. A Debian GNU/Linux 5.0 által támogatott architektúrák 13
 4.2. A telepítés módszerei .. 14
 4.2.1. A telepítő CD/DVD-k fajtái .. 15
 4.3. A telepítő program indítása .. 15
 4.4. A telepítés lépései .. 16
 4.5. A telepítő CD felépítése ... 17
 4.6. A Debian GNU/Linux csomagkezelése 17
 4.6.1. A csomagok fajtái, a csomagnév felépítése 17
 4.6.2. A csomagok egymáshoz való viszonya, állapotaik 19
 4.6.3. A csomagkezelés szempontjából fontos könyvtárak, fájlok 20
 4.6.4. A csomagkezelés parancsai .. 23
5. A diszk adminisztráció és parancsai .. 29
 5.1. A diszk kezelés és lehetőségei ... 29
 5.2. A Szoftveres RAID (md) ... 30
 5.3. Az LVM ... 33
 5.4. Egy RAID1-et, illetve LVM2-t együttesen használó rendszer telepítése ..35
 5.5. A diszk particionálás és a fájlrendszer létrehozás 38
 5.5.1. A diszk particionálás ... 38
 5.5.2. A fájlrendszer létrehozás .. 39
 5.6. A fájlrendszerek ellenőrzése és csatlakoztatása 41
 5.6.1. A fájlrendszer ellenőrzése .. 41
 5.6.2. Fájlrendszer csatlakoztatása .. 41
 5.7. A fájlrendszerek átmeretezése ... 43
 5.7.1. Fájlrendszer méretének a növelése 43
 5.7.2. Fájlrendszer méretének a csökkentése 44
 5.8. A fájlrendszerekhez kapcsolódó konfigurációs fájlok 44
6. Saját kernel fordítása ... 47
 6.1. Előkészületek a kernelfordításhoz ... 47
 6.1.1. Mikor szükséges kernet fordítani? .. 47
 6.1.2. A kernel fordítás szükségletei ... 48
 6.1.3. A kernel forrás előkészítése és foltozása 49
 6.2. A hardver eszközök és szoftver szükségletek vizsgálata 50
 6.2.1. A VMware virtuális gép hardver paraméterei 50
 6.3. A kernel konfigurálása ... 52
6.3.1. A konfigurálás lehetőségei és a használt jelölési módok..............52
6.3.2. A konfigurálás menüpontok szerint..54
6.4. A konfigurálás néhány fontos beállítása..63
6.5. Fordítás előzetes konfiguráció alapján..64
6.6. Kernel fordítás „Debian módra”..66
7. Felhasználó adminisztráció és a PAM..68
7.1. A felhasználó adminisztráció parancsai.......................................68
7.2. A PAM (Pluggable Authentication Modules)..................................71
8. A TCP/IP alapú hálózat beállítása..75
8.1. A hálózati beállítás folyamata...75
8.2. A hálózati beállítása a /etc/network/interfaces alapján...............76
8.3. A hálózat beállításához kapcsolódó parancsok............................77
8.4. A névfeldolgoz konfigurációja...79
8.5. A hálózat működésének tesztelése...80
8.6. A hálózat megfigyeléséhez kapcsolódó parancsok.........................81
9. A hálózati biztonságról dióhéjban..85
10. Fontosabb hálózati szolgáltatások Debian GNU/Linux operációs rendszerben
10.1. Az OpenSSH..87
10.1.1. Az SSH protokolljai...88
10.1.2. Az SSH fontosabb hitelesítési lehetőségei...............................89
10.1.1.3. Az SSH-hoz kapcsolódó fontosabb parancsok.........................89
10.1.4. Az SSH kiszolgáló néhány konfigurációs lehetősége...............90
10.1.5. Az SSH kliens használata...91
10.1.6. Fájlátvitel scp és sftp használatával.......................................92
10.2. A Linux mint web szerver..93
10.2.1. Az Apache jellemzői...93
10.2.2. Az Apache telepítése forráskódból...94
10.2.3. Az Apache könyvtárai és parancsai.......................................95
10.2.4. Az Apache néhány konfigurációs direktívája..........................96
10.2.5. A Debian csomagban elérhető Apache 2.2 telepítése..............104
10.3. FTP szerver használata Debian GNU/Linux operációs rendszerben...105
10.3.1. Az FTP protokoll fontosabb jellemzői.....................................105
10.3.2. A ProFTPD (Professional File Transfer Protocol Daemon) jellemzői
10.3.3. A ProFTPD néhány konfigurációs direktívája.........................106
10.4. A Samba..112
10.4.1. A Samba legfontosabb jellemzői...112
10.4.2. A Samba néhány konfigurációs direktívája.............................114
10.5. A MySQL..118
10.5.1. A MySQL szerver legfontosabb jellemzői...............................119
10.5.2. A MySQL szerver telepítése bináris archívumból....................119
10.5.3. A MySQL könyvtárai és parancsai..................................120
10.5.4. A MySQL néhány konfigurációs direktívája.........................120
10.5.5. A MySQL jogosultsági rendszere..122
10.5.6. Adatbázis mentése és visszaállítása MySQL-ben.....................125
10.6. A Linux mint levelező szerver..125
10.6.1. Az e-mail küldéssel kapcsolatos fogalmak és problémák........125
10.6.2. Az Postfix..126
10.6.3. A Postfix néhány konfigurációs direktívája.............................129
10.6.4. A Postfix adminisztrációs parancsai..........................130
10.7. A Linux mint tűzfal...131
 10.7.1. A tűzfalak általános jellemzői, típusaik, elvek........131
 10.7.2. A kernel szintű tűzfal...132
 10.7.3. Az iptables parancs használata, paraméterei..............135
 10.7.4. A tűzfal működéséhez szükséges kernel opciók............141
11. Irodalomjegyzék..142
 11.1. Könyvek, kiadványok...142
 11.2. Internetes hivatkozások...142
1. Jogi nyilatkozat, támogatás

Hadarics Kálmán, mint szerző nyilatkozom, hogy ez a mű a saját tapasztalatom és munkám eredménye, a benne foglaltak senkinek a szerzői jogait nem sértik.

Ezen mű (jegyzet) a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Licence (CC-BY-NC-SA) feltételei szerint érhető el és terjeszthető.

A licence elérhető a http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode webcímen.

A magyar nyelvű magyarázata többek között megtekinthető a:
- http://creativecommons.org/licenses/by-sa/3.0/deed.hu
- http://hu.wikipedia.org/wiki/CC#Creative_Commons-licencek

A jegyzettel kapcsolatban mindenféle építő jellegű kritikát, észrevételt, szívesen fogadok a kami@mail.duf.hu e-mail címen.

Amennyiben új gondod, hogy ez az ismeretanyag, amit ezen műben megkaptál értékes, kérlek a lehetőségeidhez mértén támogass. Az így befolyt összeget ezen ismeretanyag bővítésére, korszerűsítésére fogom fordítani.

Amennyiben támogatni szeretnél látogass el a http://kami.duf.hu/debian_jegyzet weboldalra. Itt lesznek információk arról, hogy a támogatásodat hogyan juttathatod el hozzám. A támogatással kapcsolatban szintén érdeklődhetsz a kami@mail.duf.hu email címen. Az előző webcímen a jegyzet aktualizált kiadásai szintén elérhetőek lesznek.

Előre köszönöm mindenkinek a támogatását, jó kedvet az olvasáshoz, sok sikert az életben, és „kössön mindenki jó barátságot” a Debian GNU/Linux operációs rendszerrel.

Hadarics Kálmán

kami@mail.duf.hu
2. Bevezetés

A Debian GNU/Linux operációs rendszer az egyik legrégebbi Linux terjesztés. Nagyon sok helyen előszeretettel használják hálózati szolgáltatások, hálózat menedzselési feladatok ellátására. Ezen mű elsősorban olyan informatikus hallgatóknak és olyan személyeknek szól, akik már rendelkeznek tapasztalatokkal, használták már „desktop” operációs rendszerként Linuxot. A jegyzetben gyakorlati, rendszeradminisztrátori szempontból igyekszem bemutatni a Debian GNU/Linuxot és néhány elterjedt hálózati szolgáltatását. Feltételezem, hogy az olvasó rendelkezik általános ismeretekkel a számítógép hálózatokról és a TCP/IP alapú kommunikációról.

Mivel a Linux a létét a számítógép hálózatoknak köszönheti, ezért ezt úgy „igyekszik meghalálni”, hogy mindenféle hálózati feladathoz készülnek alkalmazások. Ezen alkalmazások száma akkorra, hogy bemutatni mindet és ezeknek a lehetőségeit reménytelen vállalkozás lenne.

A jegyzet felépítését tekintve több egymástól részben függetleníthető részt tartalmaz. Az első részben a Debian GNU/Linux verziót, irányelveit mutatom be. Ez után következik telepítésének folyamatának áttekintése és a csomagkezelő struktúrájának és parancsainak a bemutatása. A rendszer megbízható működésének és rugalmasságának alappillére a jól megválasztott diszk kezelési módszer. Fontos az adatok redundáns tárolása, az adatok elérésének sebessége és az egyes partíciók átméretezhetősége. Ebben a fejezetben a szoftveres RAID és a LVM lehetőségeit és parancsait mutatom be.

A Linux operációs rendszer magjának, a kernelnek az ismerete is nagyon fontos a rendszer működése szempontjából. A jegyzetben bemutatom a kernelfordítás folyamatát és főbb konfigurációs opcionálisok magyarázatát a fűzők. A fejezet átvilágosítása után képesnek kell lenni egy gép esetében működő kernel fordítására. A telepítés és a kernelfordítás után röviden ismertetem a PAM lehetőségeit és a felhasználói adminisztrációt. A továbbiakban pedig a TCP/IP alapú hálózat beállításának bemutatásával folytatom. A jegyzetben néhány hálózati szolgáltatást emeltem ki, amelyeket részletesen bemutatom a konfigurálással együtt. A szolgáltatások választásánál figyelembe vettem az egyes programok népszerűségét és természetesen a személyes tapasztalataimat is.

Igyekszem az alkalmazásokat a gyakorlati oldalról megközelíteni és a biztonsági szempontból fontos aspektusokat külön hangsúlyozni. Az alkalmazások esetében általában nem a telepítés a legizgalmasabb kérdés. Nagyon sok esetben csomagból az egyes alkalmazások telepíthetőek. Sokkal érdekesebb kérdés, hogy az alkalmazások hogyan tudnak együttműködni, milyen lehetőségek vannak arra, hogy együttesen ellássák egy informatikai rendszer feladatait.

A jegyzet tartalma alapján, remélem mindenki képes lesz a hálózat és a hálózati szolgáltatások telepítésére Debian GNU/Linux operációs rendszerben. Képesek leszünk Linux alapú rendszerek telepítésére, menedzselésére, integrációjára. Ezen a területen is érvényes a névszerverek esetében használt elv, hogyha nem tudok valamit, akkor megkérdezem attól, aki tudja vagy csinált már ilyet. Fontos dolog, hogy ha valami nem működik elsőre, próbáljunk meg a hiba okára rájönni (sok esetben a Google segíthet) és megtalálni rá a megfelelő megoldást. A logikus, következetes gondolkodást elsajátítva, problémamegoldó képességünket továbbfejlesztve képesek leszünk a Linux tetszőleges módú használatára.
3. A Debian GNU/Linux

3.1. A disztribúció eredete és jellemzői

A Debian a legkorábbi Linux disztribúciók egyike. 1993 augusztusában Ian Murdock indította útjára a GNU szellemében. A projekt nevét a feleség (Debora) neve után kapta. A „Deb“ és a „Ian“ összekapcsolásából született meg a Debian név.

A disztribúció jelenleg a legnagyobb nem kereskedelmi terjesztések közé tartozik.

Legfontosabb jellemzői:

- teljesen ingyenes és saját szabad szoftver irányelvekkel rendelkezik
- számtalan önkéntes fejlesztő tartja karban
- fejlett csomagkezelő rendszerrel rendelkezik és sok bináris formában elérhető csomaggal (kb. 22600 a 5.0 esetében)
- a felhasználókkal való viszonyt a „Debian társadalmi szerződés“ írja

3.2. A Debian szabad szoftverekre vonatkozó irányelvei (Debian Free Software Guidelines – DFSG)

1. Szabad terjesztés

A Debian összetevőinek licence senkit sem korlátozhat abban, hogy a szoftvert különböző forrásokból származó programokból felépített szoftver-disztribúciók összetevőjeként eladja vagy továbbadja. Az ilyen jellegű eladásokra vonatkozóan a licenc semmiféle szabadalmi vagy egyéb díj megfizetését nem követelheti meg.

2. Forráskód

A programnak tartalmaznia kell a forráskódot, és a lefordított változat mellett engedélyeznie kell a forráskód terjesztését is.

3. Leszármazott munkák

A licencnek lehetővé kell tennie a módosításokat és leszármazott munkák készítését, és engedélyeznie ezek terjesztését az eredeti szoftver licencével megegyező licenc hatálya alatt.

4. A szerző forráskódjának sértetlensége

A licenc korlátozhatja a forráskód módosított formáinak terjesztését, de csak abban az esetben, ha emellett lehetővé teszi „patch fájlok“ együttes terjesztését a forráskóddal, amelynek segítségével a program módosítása elvégezhető a fordítás során. A licencnek kifejezetten engedélyeznie kell a módosított forrásból összeállított szoftver terjesztését. A licenc megkövetelheti, hogy a leszármazott munkák neve vagy verziószáma az eredeti szoftverétől eltérjen. (Ez egy kompromisszum. A Debian csoport arra buzdít minden szerzőt, hogy ne korlátozzák se a forrás-, se a bináris fájlok módosítását.)

5. Mentesség a személyekkel vagy csoportokkal szembeni diszkriminációtól

A licenc semmilyen személyvel vagy csoporttal szemben nem alkalmazhat megkülönböztetést.

6. Mentesség a felhasználási területekről szembeni diszkriminációtól

A licenc senkit nem korlátozhat abban, hogy a programot egy adott felhasználási területen alkalmazza. Például nem korlátozhatja egy adott program üzleti vagy génkutatásban való felhasználását.
7. Licenc terjesztése
A programra vonatkozó jogoknak úgy kell vonatkoznia mindenkire, akik hozzájutnak a programhoz, hogy ne legyen szükség további licenc elfogadására.

8. A licenc nem lehet a Debianra jellemző
A programra vonatkozó jogok nem függhetnek attól, hogy a program a Debian része vagy sem. Ha a programot a Debian rendszertől elkülönítve használják fel vagy terjesztik, de ez a programlicencnek megfelelő módon történik, akkor a programhoz hozzájutók mindegyikének azonos jogokkal kell rendelkeznie azokhoz képest, akik a Debian rendszerrel együtt jutottak a programhoz.

9. A licenc nem érinthet más szoftvereket
A licenc nem tartalmazhat a licenc szoftverrel együtt szállított szoftverekre vonatkozó korlátozásokat. Például a licenc nem határozhatja meg, hogy a vele azonos adathordozón található programok mindegyikének szabad szoftvernek kell lennie.

10. Példalicencék
 A „GPL”, a „BSD” és az „Artistic” licenceket „szabad” licencnek tekintjük.

3.3. „Társadalmi szerződés” a Szabad szoftver közösséggel

1. A Debian 100%-ig szabad szoftver marad
 Megígérjük, hogy a Debian GNU/Linux disztribúciót megtartjuk teljes egészében szabad szoftvernek. Mivel a szabad szoftver kifejezésének többfféle értelmezése is van, a későbbiekben azt is felvázoljuk, hogy milyen irányelvek segítségével döntjük el a szoftverekről, hogy „szabad” szoftverek-e. Támogatjuk azokat a felhasználókat, akik Debian disztribúción nem szabad szoftvereket fejlesztenek vagy használnak, de a rendszer sohasem fog nem szabad szoftvertől függeni.

2. Mindent visszajuttatunk a Szabad szoftver közösségnek
 Ha új összetevőket írunk a Debian rendszerhez, akkor ezeket szabad licenc hatálya alá helyezzük. Mindig a lehető legjobb rendszer létrehozására törekzünk, ezért szabad szoftverek széles körben elterjedhetnek. A hibajavításokat, továbbfejlesztéseket és felhasználói kéréseket eljuttatjuk a rendszerünkben található szoftverek „illetékes” szerzőinek.

3. Nem rejtjük el a problémákat
 A teljes hibajelentési adatbázisunk folyamatosan elérhető lesz a nyilvánosság számára. A felhasználók által elektronikusan leadott jelentések azonnal láthatóvá válnak másoknak.

4. A prioritást a felhasználóink és a szabad szoftverek jelentik
 A lépéseinket a felhasználóink és a szabad szoftverek közössége fogja irányítani, az ő érdekeiket helyezzük előtérbe. Támogatjuk a felhasználóknak a többféle számítástechnikai környezetben való működésself kapcsolatos igényeit. Nem akadályozzuk meg, hogy kereskedelmi szoftverek készüljenek a Debian rendszerekre, és azt is engedélyezzük másoknak, hogy a Debianból és további kereskedelmi szoftverekből érték növelt disztribúciókat hozzanak létre anélkül, hogy ezért fizetniük kelljen. Ezen célok elérése érdekében 100%-ig szabad, kiváló minőségű szoftverekből integrált rendszert nyújtsunk bármely olyan jogi korlátozás nélkül, amely megakadályozná a disztribúció ilyen jellegű felhasználását.
5. A szabad szoftverekre vonatkozó szabványainknak nem megfelelő programok

Tudomásul vesszük, hogy bizonyos felhasználóinknak olyan programokra van szükségük, amelyek nem felelnek meg a Debian szabad szoftverekre vonatkozó irányvonalaknak. Az ilyen szoftverek számára hoztuk létre az FTP archívumok „contrib” és „non-free” területét. Ezen könyvtárakban található szoftverek nem részei a Debian rendszernek, bár be vannak állítva a Debian alatti használathoz. A CD-gyártóknak ajánljuk az itt található szoftvercsomagok licenceinek áttekintését annak meghatározásához, hogy terjeszthetik-e az adott szoftvert az általuk forgalomba hozott CD-ken. Ennek megfelelően, bár a nem szabad szoftverek nem képezik a Debian részét, támogatjuk használatukat, és a nem szabad szoftvercsomagok számára is biztosítunk infrastrukturális hátteret (például a hibakövetési rendszert és különféle levelezési listákat).

3.4. Debian - Az univerzális operációs rendszer

A Debian projektben résztvevő személyek célja hogy egy szabadon használható operációs rendszert hozzanak létre. A legtöbb alapvető alkalmazás a GNU projektből származik. A Debian jelenleg a Linux kernel köré épül. Éppen ezért, amikor az operációs rendszerre hivatkoznak, helyesebb, hogyha Debian GNU/Linuxnak mondjuk. A Debian fejlesztés azonban nem korlátozódik kizárólag a Linux kernel köré. Vannak például a Hurd mikrokernelre (Debian GNU/Hurd), vagy a NetBSD kernelre (Debian GNU/NetBSD) alapuló fejlesztések is. Amikor Debiant mondunk, akkor általában a Debian GNU/Linuxra gondolunk.

3.5. A Debian GNU/Linux verziói

A Debian verziókat a verziószám mellett egy kódnévvel (fantázianévvel) is jellemzhetjük (az 1.0 kivételével). Ezek a kód nevek a Toy Story című animációs filmből erednek.

<table>
<thead>
<tr>
<th>Verzió</th>
<th>Megjelenés ideje</th>
<th>Kódnév</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1995</td>
<td>-</td>
</tr>
<tr>
<td>1.1</td>
<td>1996 június</td>
<td>Buzz</td>
</tr>
<tr>
<td>1.2</td>
<td>1996 december</td>
<td>Rex</td>
</tr>
<tr>
<td>1.3</td>
<td>1997 június</td>
<td>Bo</td>
</tr>
<tr>
<td>2.0</td>
<td>1998 július</td>
<td>Hamm</td>
</tr>
<tr>
<td>2.1</td>
<td>1999 március</td>
<td>Slink</td>
</tr>
<tr>
<td>2.2</td>
<td>2000 augusztus</td>
<td>Potato</td>
</tr>
<tr>
<td>3.0</td>
<td>2002 július</td>
<td>Woody</td>
</tr>
<tr>
<td>3.1</td>
<td>2005 június</td>
<td>Sarge</td>
</tr>
<tr>
<td>4.0</td>
<td>2007 április</td>
<td>Etch</td>
</tr>
<tr>
<td>5.0</td>
<td>2009 február</td>
<td>Lenny</td>
</tr>
<tr>
<td>6.0</td>
<td>?</td>
<td>Squeeze</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Sid</td>
</tr>
</tbody>
</table>
A Debian a terjesztések esetében a következő elnevezéseket is használja:

- **stable**: a mindenkori stabil változat (jelenleg az „Etch”), amely használata ajánlott. A kiadást egy hosszú tesztelési fázis előzi meg. Nem minden esetben tartalmazza a legújabb programokat.
- **testing**: a tesztelés alatt lévő változat (jelenleg a „Lenny”). Ide kerülnek bele azok az alkalmazások, amelyek a következő stabil disztribúcióban benne lesznek.
- **unstable**: a legfrissebb programokat tartalmazza. („Sid” a kódneve, amely nem változik.) Egyáltalán nem garantált, hogy az alkalmazás működni is fog. Tapasztalt felhasználóknak ajánlott.
- **oldstable**: amikor megjelenik egy új stabil kiadás, akkor a korábbi stabil kiadást jelenti

Ezek az elnevezések a gyakorlatban szimbolikus linkeket jelentenek. A linkek pedig a kódnévvel megegyező nevű könyvtárra mutatnak. A verzió változás (új stabil megjelenése) csak szimbolikus link állítást követel meg.

Van arra is lehetőség, hogy ún. kevert Debian disztribúciót használjunk. Ez annyit jelenthet például, hogy bizonyos csomagokat a stabil verzióból, míg másokat a testing, vagy az unstable verzióból használunk. Ebből elég sok függőségi probléma adódhat, hiszen általában az egyes kiadások különböző GLIBC verziókra épülnek.
4. A Debian GNU/Linux telepítési folyamata

4.1. Előkészület a telepítésre

Az operációs rendszer telepítés nagy hatással lehet a számítógép további állapotára, használhatóságára. Általános szabályként elmondható, hogy mielőtt nekilátánk a telepítésnek, mentsük le az összes fontos adatunkat a diszkjeinkről. Abban az esetben, hogyha valaki nem ismeri megfelelő mélységben a telepítő programot, véletlenül is hibázhat. Ekkor pedig akár több éves munkája is elveszhet.

4.1.1. A telepítéshez szükséges információk

A telepítés elkezdése előtt a hardverrel és a hálózati beállításokkal tisztában kell lennünk. Továbbá a telepítendő rendszerrel kapcsolatban néhány dolgot tisztáznunk kell, meg kell terveznünk. Ezek közül a legfontosabbak:

- **A hardver eszközök típusai, lehetőségeik.** Mielőtt a telepítésnek nekilátunk tudnunk kell a hardver eszközök típusait illetve ezek paramétereit. Ajánlott megnézni, hogy az adott eszközök Linux kompatibilisek-e. Ezt a lépést a hardver eszközök megvásárlása előtt a legjobb eldönteni.

- **A hálózati paraméterek.** A hálózati rendszergazdától kérhetünk a Linux szerver számára IP címet, illetve tudhatjuk meg tőle a hálózat további paramétereit. A továbbiakban feltételezem, hogy TCP/IP alapú hálózatot használunk, illetve IPv4-et.

- **Az új rendszer felhasználási területe, a rendszer működése szempontjából szükséges szolgáltatások.** Ez befolyásolja például a lemezek particionálását, az alkalmazandó elveket a redundáns adattárolásra vonatkozóan.

- **A fájlrendszerek képességei.** Vannak olyan feladatok, amely esetben nem elhanyagolható szempont a fájlrendszer választás sem. Ez azokra az esetekre igaz elsősorban, ahol a rendszer I/O terhelése kifejezetten nagy lesz, és jelentős teljesítménykülönbség adódhat a fájlrendszer típus függvényében.

- **Biztonsági, üzemeltetési megfontolások.** Már a telepítés előtt evidens, hogy a rendszer a későbbiekben üzemeltetni is kell. Éppen ezért nem árt megtervezni a rendszeres és időszakos mentések módját és módszereit. Kellő tervezéssel egyszerűíthetjük és hatékonyába tehetjük a biztonsági mentéseket.

- **Az előző szempontok figyelembevételével határoznunk kell a lemezek particionálására vonatkozóan.** Egy sémát kell definiálnunk, amelyben rögzítjük az egyes partíciók sorrendjét, méretét, és a használni kívánt fájlrendszert.
Partíció | Típus | Méret | Csatlakoztatási pont
--- | --- | --- | ---
/dev/sda1 | ext3 | 100MB | /boot
/dev/sda2 | swap | 500MB | -
/dev/sda5 | RAID | 2500MB | -
/dev/sda6 | xfs | fennmaradó | /tmp
/dev/sdb1 | RAID | 2500MB | -
/dev/sdb2 | xfs | fennmaradó | /var
/dev/sda5,/dev/sdb1 | RAID1 | xfs | 2500 MB | /

Abban az esetben, hogyha a hardver eszközt több architektúra is támogatja, fontos döntés, hogy melyiket használjuk. Jelenleg ilyenre lehetőségünk van a PC-k esetében. Választhatjuk a hagyományos x86 (i386) 32 bites architektúrát, de az újabb processzorokon működik az x86_64 (amd64) 64 bites is. Vigyázzunk arra, hogy ne keverjük össze az ia64 (64 bites Itanium) és az x86_64 architektúrát. Azok az újabb Intel processzorok (pl.: Core2, Quad Core, ...), amelyek támogatják a 64 bites üzemmódot (EMT64), azok esetében csak az x86_64 architektúrát használhatjuk, az ia64-et nem. A Debian telepítő CD-k letöltésekor pedig az amd64-et kell választanunk. A Debian 5.0 esetében létezik 64 bites operációs rendszer is. A legtöbb 32 bites alkalmazás elérhető ez alatt is. Azokkal a programokkal lehet gond, amelyeknek nem hozzáférhető a forráskódja, és csak bináris formában érhetők el. Ilyen például az Acrobat Reader vagy a Adobe Flash, amelyeknek csak 32 bites verziói léteznek. Jelenleg nem érhető el stabil 64 bites Java plugin a Mozilla/Firefox/Iceweasel böngészők alá.

4.1.2. A telepítés célja

A telepítés megkezdése előtt fontos dolog, hogy tiszta által megszólalja az egész folyamat céljával. Ha egyszerűn akarjuk megfogalmazni, akkor mondhatjuk azt, hogy az előzetes tervben meghatározott séma szerint kell egy Linux operációs rendszernek megjelennie a cél számítógépen. Ez annyit jelent, hogy valamilyen módszerrel a cél számítógépen létre kell hozni a szükséges fájlrendszereket, és adott médiumról (pl.: CD, DVD, hálózat, másik HDD, floppy?, USB pendrive, ...) kell fájlokat átmásolni, kicsomagolni és a szükséges beállításokat megtenni. Miután ez bekövetkezett, képessé kell tenni az új rendszert, hogy „külső segítség nélkül” képes legyen elindulni és a továbbiakban működni.

4.1.3. A Debian GNU/Linux 5.0 által támogatott architektúrák

Jelenleg többféle architektúrára vonatkozóan elérhető és telepíthető a Debian GNU/Linux CD segítségével.
Architektúrák, amelyekre létezik telepítő CD: 3. sz. táblázat

<table>
<thead>
<tr>
<th>Debian architektúra</th>
<th>Számítógép (CPU) típus</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Compaq (HP) Alpha AXP</td>
</tr>
<tr>
<td>arm</td>
<td>ARM (beágyazott rendszerek)</td>
</tr>
<tr>
<td>amd64</td>
<td>64 bites AMD, Intel EM64T</td>
</tr>
<tr>
<td>i386</td>
<td>Intel x86 32 bit (IA-32)</td>
</tr>
<tr>
<td>ia64</td>
<td>Intel 64 bit (Itanium, IA-64)</td>
</tr>
<tr>
<td>hppa</td>
<td>HP PA-RISC</td>
</tr>
<tr>
<td>mips</td>
<td>SGI (big-endian)</td>
</tr>
<tr>
<td>mipsel</td>
<td>Digital DECstations and Cobalt Qube/RaQ (little-endian)</td>
</tr>
<tr>
<td>powerpc</td>
<td>Power Macintosh, IBM pSeries</td>
</tr>
<tr>
<td>s390</td>
<td>IBM S/390</td>
</tr>
<tr>
<td>sparc</td>
<td>SUN Sparc, UltraSparc</td>
</tr>
</tbody>
</table>

A továbbiakban csak az IA-32 (i386, x86) architektúrára való telepítést fogom bemutatni, a többi architektúrához tartozó telepítő lehetőségeitől, beállításaitól eltekintek.

4.2. A telepítés módszerei

A telepítés elvégzésére tehát többféle módszer létezik. A továbbiakban csak azokat a módszereket ismertetem, amelyek nem járnak az adott gép „szétszedésével”. Ezen módszerek közül a legfontosabbak:

- telepítő CD/DVD segítségével
- telepítő indítása külső USB eszkökről
- telepítő indítása hálózatról
- telepítő indítása floppy segítségével (manapság már nem jellemző)

Amennyiben az adott számítógépen már telepítve van egy Linux operációs rendszer, akkor megoldható az is, hogy ennek a felhasználásával telepítsünk egy másik lemezre vagy partícióra egy rendszert. A „debootstrap” parancs segítségével egy elérhető Debian tükörszerverről telepíthető az operációs rendszer valamilyen csatlakoztatott könyvtár alá. Általában tehát a telepítő programot hívjuk segítségül az operációs rendszer telepítéséhez. A Debian GNU/Linux esetében ekkor a következő történik:

- az előzőekben ismertetett módok valamelyikén elindul egy kernel és egy „minimális” Linux operációs rendszer.
- a telepítő programot az elindult operációs rendszer futtatja, amely segítségével a telepítési feladat kivitelezhető

A telepítővel kapcsolatban fontos megemlíteni, hogy nem biztos, hogy a kernel összes lehetőségét támogatja. Ez elsősorban a még kísérleti fázisban lévő támogatásokra vonatkozik.

A telepítő segítségével helyi illetve hálózati csomagokat (package) is elérhetünk. Így akár a legújabb elérhető csomagokat telepíthetjük fel, amelyek korábbi biztonsági hibákat már nem tartalmaznak. A Debian 5.0 esetében minden
csomag el van látva digitális aláírással. A magasabb szintű csomagkezelő alkalmazásokkal (pl.: apt-get, dselect, aptitude, ...) csak olyan csomagok telepíthetők, amelyek a fejlesztők hivatalos aláírásával rendelkeznek.

4.2.1. A telepítő CD/DVD-k fajtái

- ISO képfájlok (iso9660 image) formájában.
 A teljes disztribúció az 5.0 i386 esetében 5 db ISO DVD vagy 31 db ISO CD formájában érhető el. Ezek ftp vagy http segítségével letölthetők.
- Bittorrent fájlok is elérhetők, vagyis a fájlcserélő protokoll segítségével is megoldható az ISO fájlok letöltése.
- Jigdo segítségével is beszerezhetők a telepítő CD-k. A jigdo egy alkalmazás, amely képes több különböző tükörhelyről tölteni a CD egyes részeit, majd pedig összeállítani az ISO fájlt.

Fontos dolog, hogy amennyiben a telepítendő gép rendelkezik hálózati kapcsolattal, akkor nem kell feltétlenül az összes CD-t vagy DVD-t letölteni. Az elsőn rajta vannak azok a csomagok, amelyek minden esetben szükségesek. A továbbiakat pedig telepíthetjük hálózat felhasználásával.

Miután az ISO fájlokat letöltöttük, ajánlott az épségük ellenőrzése. Ezt úgy tehetjük meg, hogy elsőként letöltjük a hozzájuk kapcsolódó MD5 vagy SHA1 ellenőrző összeget tartalmazó fájlokat. Ezek után pedig az md5sum vagy a shasum parancs segítségével (-c kapcsoló) ellenőrizzük, hogy ezek igazak-e a letöltött fájlokra.

A következő ISO fájlok érhetők el (pl: i386 5.0 release 3 esetében):

- debian-503-i386-CD-1.iso: telepítő Gnome grafikus környezettel (full CD)
- debian-503-i386-kde-CD-1.iso: telepítő KDE grafikus környezettel
- debian-503-i386-xfce+lxde-CD-1.iso: telepítő XFCE és LXDE grafikus környezettel
- debian-503-i386-netinst.iso (kb. 150MB): csak egy alaprendszer tartalmaz, és a hálózati telepítéshez szükséges csomagokat
- debian-503-i386-businesscard.iso (kb. 36MB): az alaprendszer is hálózatról tölti le

4.3. A telepítő program indítása

A Debian GNU/Linux 5.0 telepítője kapott egy új induló képernyőt (splash screen) és boot menüit. Itt egyszerűen, menüből módon választhatunk a telepítési módok között. Telepíthetünk karakteres és grafikus felület használatával, és az 'Advanced options' menüpont alatt egyéb módokon is indíthatjuk a telepítést. A 'Help' menüpont kiválasztása után megkapjuk a korábbi verziókból jól ismert telpítési felületet, és leírást. Itt az F1-F10 gombok segítségével megtekinthetünk egy rövid súgót a telepítő használatáról. A legfontosabb információkat a harmadik oldal (F3) tartalmazza. Itt kerül ugyanis leírásra, hogy a telepítő milyen paraméterek segítségével indítható.

A Debian 5.0 telepítőjének indítási lehetőségei:

- **install**: A „alapértelmezett” (egyszerű) telepítési mód karakteres felületen. A telepítő program sok esetben alapértelmezett beállításokkal dolgozik.
Például a hálózat konfigurálása esetében feltételezi, hogy van DHCP szerver a hálózatban, és ennek a segítségével próbálja a hálózati kártyát konfigurálni.

- **installgui**: Az előzővel megegyező telepítési mód, csak nem karakteres, hanem grafikus felületen.
- **expert**: Szakértőknek való telepítési mód. Ebben az esetben a telepítés folyamatába teljes mértékben beavatkozhatunk. A telepítő sokkal bőbésszédeskább, mint az alapértelmezett mód esetében. Itt adódik arra lehetőség, hogy megválasszuk a betöltendő kernel modulokat, és a telepítő opcionális bővítményeit felhasználjuk.
- **expertgui**: Az előzővel megegyező telepítési mód, csak nem karakteres, hanem grafikus felületen.
- **rescue**: Ez a mód nem telepítésre, hanem egy korábban feltelepített rendszer elérésére szolgál. Ennek a felhasználásával elérhetjük az adott partíció lévő fájlokot, és készíthetünk róluk másolatot. Illetve amennyiben a rendszerünk valamilyen oknál fogva nem képes elindulni, akkor a problémát orvosolhatjuk.
- **rescuegui**: az előzővel megegyező a feladata, csak nem karakteres, hanem grafikus felületen.

Bármelyik menüpont esetében egy kernel indul el. Amennyiben szeretnénk a kernelnek parancssorban paramétereket átadni, akkor ezt egyszerűen az indítási mód után begépelhetjük.

pl.: `install acpi=off`

A telepítőnek szóló speciális boot paraméterek átadására is van lehetőségünk. Ilyen például:

- `netcfg/disable_dhcp=true`, amely egyszerű módban letiltja a DHCP használatát
- `bootkbd=hu`, magyar billentyűzet kiosztással indítja el a telepítőt az angol helyett.

4.4. A telepítés lépései

- Nyelv, billentyűzet kiosztás, helyi beállítások (locales) definiálása
- CD-ROM érzékelése és csatolása
- Telepítő összetevők betöltése CD-ről
- Hálózati hardver felderítése
- Hálózat konfigurálása
- Lemezek észlelése
- Lemezek particionálása
- Időzóna és óra beállítása
- Felhasználók és jelszavaik felvitele
- Alaprendszer (Base System) telepítése
- A csomagkezelő beállítása
- Szoftverválasztás és telepítés
- A GRUB (LILO) rendszerbetöltő lemezre telepítése

„Expert” módban könnyen megfigyelhetjük a telepítési lépéseket. Az egyszerű mód ugyanis bizonyos lépéseket nem mutat, vagy összevon más lépéseket. Az
előző listában csak azokat a lépéseket soroltam fel, amelyeket rendszerint használunk. Vannak azonban ezekben a független speciális szituációkban (pl.: ellenőrzés, hibakeresés, opcionális lehetőségek) használjuk.

4.5. A telepítő CD felépítése
A továbbiakban a debian-503-i386-CD-1.iso fájl felépítését fogom bemutatni. A CD gyökerében a következő fontosabb könyvtárakat és fájlokat találhatjuk:

Könyvtárak:
- `.disk` lemezinformációk. pl.: verziószám, CD típus, elérhető telepítő komponensek (udeb fájlok)
- `dists/lenny` a lemezen található Debian verzió külön alkönyvtárban
- `doc` telepítési kézikönyv és FAQ dokumentumok különböző nyelveken, az aktuális kiadás változásai, képességei (release notes)
- `install.386` a telepítő indulásához szükséges kernel és initrd image
- `isolinux` a telepítő főmenüje, a telepítő esetében használt rendszerbetöltő (isolinux) beállításai
- `pics` png formátumban a Debian logo és a telepítő által használt egyéb képek
- `pool` a CD-n elérhető csomagok rendszerezve
- `tools` régebbi, főként DOS-os eszközök a Linux indításához

Fájlok:
- `README.{txt,html}` rövid leírás a disztribúcióról
- `autorun.{inf,bat}` „más” operációs rendszerek esetében a leírás automatikus indítása
- `md5sum.txt` a CD-n található fájlokra vonatkozóan MD5 ellenőrző összeg

Szimbolikus link:
- `debian` nevű szimbolikus link, amely a -.ra mutat

4.6. A Debian GNU/Linux csomagkezelése

4.6.1. A csomagok fajtái, a csomagnév felépítése
A Debian saját csomagformátumot használt a disztribúcióhoz tartozó csomagok esetében. Ezt hívjuk DEB csomagnak (.deb), amely a Unix „ar” fájlformátumát követi. Egy csomag nevének felépítése a következő szabályokat követi:

```
<package>_<versionnumber>-<revisionnumber>_<arch>.deb
```

Az előző sor esetében az egyes részek jelentése a következő:

- `<package>` a csomag rövid neve. Amikor egy szoftver része lesz a Debian-nak, akkor kap egy egyedi nevet. Ez általában a későbbiekben sem változik meg.
- `<versionnumber>` a csomagban lévő szoftver verziószáma, amely alapján a csomag készült
• `<revisionnumber>` a csomag módosításakor, javításakor az értéke növekszik. Nemcsak számot, hanem karakterláncot is tartalmazhat, amely a Debian verzióra is utal egyben.

• `<arch>` az architektúra, amely esetében a csomag telepíthető pl.: bash_3.2-4_i386.deb vagy php5-xsl_5.2.6.dfsg.1-1+lenny4_i386.deb

Az `<arch>` mező esetében speciális értéket jelöl az „all”. A csomagok között vannak olyanok, amelyek nem különbözőnek architektúránként. Ezeket hívhatjuk architektúra független csomagoknak. Tehát ezek olyan fájlokat tartalmaznak (tipikusan beállítások, dokumentációk), amelyek esetében teljesen felesleges lenne az architektúránkénti tárolás és megkülönböztetés.

A Debian csomagok kapcsán beszélhetünk a következő fájlokról, formátumokról:

• `.deb` bináris csomag (lehet architektúra független)
• `.dsc` forrás csomag (debian source): a csomagkészítés irányítására használatos
• `.orig.tar.gz`: egy program adott verziójának eredeti forráskódja tar.gz formátumban
• `.diff.gz`: a fejlesztők által végrehajtott módosítások gzippel tömörítve diff fájlként

Lehetséges az, hogy egy forráskódból ne csak egy, hanem több bináris csomag jöjjön létre. Ez leggyakrabban olyankor szokott előfordulni, amikor több csomag is ugyanarra a szoftverre épül, annak adott részét felhasználja. Ebben az esetben például a szoftver egy részét bekerékják egy shared library-be. Majd a többi csomagot ettől teszik függővé.

Amennyiben egy DEB csomagot kicsomagolunk, a következő részeit különböztethetjük meg:

• csomag fejrész: a csomagra vonatkozó vezérlő és egyéb információk, parancsfájlok (DEBIAN)
• csomag tartalom: a csomagban lévő fájlok abszolút elérési útvonallal (CONTENT)

A csomag tehát annyival több, mint egy archívum, hogy van arra lehetőség, hogy parancsfájlok segítségével akciókat hajtsunk végre. Ennek a segítségével kívitelezhető, hogy amikor például a csomagot telepítjük, akkor rögtön a rendszerhez hozzá is igazíthatjuk. Így az új program, vagy modul rögtön a telepítést követően használhatóvá válik.

Egy csomag esetében a fejrészben a következő parancsfájlok lehetségesek:

• `preinst` telepítés (kicsomagolás) előtt
• `postinst` telepítés (kicsomagolás) után
• `prerm` törlés előtt
• `postrm` törlés után

A parancsfájlok mellett minden egyes csomag fejrészében találhatunk egy 'md5sums' nevű fájlt, amely az MDS ellenőrző összegeket tartalmazza. Emellett talán a legfontosabb fájl, a 'control' nevet viseli (A továbbiakban Debian Control File). Ebben találhatjuk a csomag vezérlő információit.
Példa egy Debian Control File-ra:

Package: mc
Version: 2:4.6.2~git20080311-4
Architecture: i386
Maintainer: Debian MC Packaging Group <pkg-mc-devel@lists.alioth.debian.org>
Installed-Size: 6252
Depends: libc6 (>= 2.7-1), libglib2.0-0 (>= 2.16.0), libgpm2 (>= 1.20.4), libslang2 (>= 2.0.7-1)
Suggests: mime-support, perl, zip, unzip, bzip2, links | w3m | lynx, arj, file, xpdf, dbview, odt2txt
Section: utils
Priority: optional
Homepage: http://www.ibiblio.org/mc/
Description: midnight commander - a powerful file manager

GNU Midnight Commander is a text-mode full-screen file manager. It uses a two panel interface and a subshell for command execution. It includes an internal editor with syntax highlighting and an internal viewer with support for binary files. Also included is Virtual Filesystem (VFS), that allows files on remote systems (e.g. FTP, SSH, SMB servers) and files inside archives to be manipulated like real files.

Az egyes mezők jelentése a következő:

Package: a csomag rövid neve
Version: a csomagban lévő program verziószáma és revíziószáma
Architecture: a csomag architektúrája
Maintainer: a karbantartó neve és e-mail címe
Installed-Size: telepítést követően a csomag tartalmának mérete kBájtban
Depends: a csomag függőségei (előfeltételei)
Suggests: a csomag „javaslatai” más csomagok telepítésére
Conflicts: ütközés más (korábbi) csomagokkal
Replaces: a csomag helyettesít más csomagokat
Section: a csomag besorolása (szekciója)
Priority: a csomag fontossága
Homepage: a program weboldala
Description: a csomag rövid, célratörő leírása

4.6.2. A csomagok egymáshoz való viszonya, állapotaik

Az előző alfejezetben bemutattam a DEB csomagok legfontosabb jellemzőit, csomagok elnevezéséhez kapcsolódó szabályokat, konvenciókat. Természetesen a csomagokra, mint egy nagy rendszer apró elemeire kell tekintenünk. Ezek az elemek azonban nem függetleníthetők egymástól, hanem szoros kapcsolatok lehetnek köztük.

Tegyük fel, hogy A és B egy-egy Debian csomag. Ebben az esetben a következő lehet a kettő csomag viszonya:

- A and B independent: A és B független egymástól.
- A depends B: A csomag függ B-től. Az 'A' csomag működéséhez feltétlenül szükséges, hogy B telepítve legyen.
- A recommends B: A csomag javasolja B-t. Például az mc segítségével csak akkor tudunk belenézni a bzip2-vel tömörített fájlokon, hogyha a bzip2 telepítve van.
- **A suggests B**: Mivel a B csomag hasonló feladatot lát el, mint az A csomag, ezért lehet, hogy adott feladatra a B csomagot könnyebben lehet felhasználni.

- **A conflicts B**: A és B ütközik egymással. Ez annyit jelent, hogy egyidejűleg a két csomag nem telepíthető. Ennek az oka lehet például az, hogy ugyanaz a fájl található meg mindkettőben.

- **A replaces B**: A helyettesíti B-t. Egy korábban létező B csomag helyett egy új csomag (A) került a disztribúcióba.

- **A provides B**: A csomag tartalmazza B-t. Az A csomagban benne van mindaz, ami B-ben megtalálható.

- **A pre-depends B**: Előzetes függőség jelzése különböző speciális programkönyvtárakra vonatkozóan.

4.6.3. A csomagkezelés szempontjából fontszerű könyvtárak, fájlok

Mivel nagyon sok csomag érhető el Debian GNU/Linux operációs rendszerben, ezért fontos, hogy megfelelően legyenek ezek a csomagok rendszerezve. A rendszerezés esetében az egyik fontos szempont a csomagok felhasználására vonatkozó lehetőségek:

- **main**: A DFSG-ben szereplő szabad licenceknek megfelelő szoftverből készített csomagok.

- **contrib**: Azon csomagok, amelyekben lévő szoftverek megfelelnek a Debian szabad licencnek, csak függnek olyan csomagtól (szoftvertől), amely nem felel meg ennek.

- **non-free**: Azok a csomagok, amelyekben lévő szoftverekre vonatkozóan a fejlesztők olyan kikötéseket tettek, amely nem kompatibilis a Debian szabad licencel.

Egy másik rendszerezési szempont az architektúra. Ennek megfelelően a következő könyvtárakat definiálhatjuk:

- **binary-all**: az összes architektúrára érvényes csomag

- **binary-<arch>**: az adott architektúrához tartozó csomagok, ahol <arch> egy a Debian által támogatott architektúra pl.: i386 vagy amd64

- **source**: a csomag forráskódjait, és a csomagkészítéshez használt fájlokat tartalmazza

Mivel nagyszámú a csomag, ezért egy harmadik rendszerezési szempont a csomag besorolása felhasználási szempontból. Ez a besorolás jelenik meg a Debian Control File Section mezőjében.
A csomagok esetében használt szekció elnevezések: 4. sz. táblázat

<table>
<thead>
<tr>
<th>Név</th>
<th>Tartalom</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>adminisztráció</td>
</tr>
<tr>
<td>comm</td>
<td>(alacsony szintű) kommunikáció</td>
</tr>
<tr>
<td>devel</td>
<td>fejlesztői („include”) fájlok</td>
</tr>
<tr>
<td>doc</td>
<td>dokumentáció</td>
</tr>
<tr>
<td>editors</td>
<td>szövegszerkesztők</td>
</tr>
<tr>
<td>electronics</td>
<td>elektronikai alkalmazások</td>
</tr>
<tr>
<td>embedded</td>
<td>beágyazott rendszerekhez köthető csomagok</td>
</tr>
<tr>
<td>games</td>
<td>játékok, oktatási célú csomagok</td>
</tr>
<tr>
<td>gnome</td>
<td>GNOME grafikus felülethez kapcsolódó csomagok</td>
</tr>
<tr>
<td>graphics</td>
<td>képszerkesztő, megjelenítő és grafikai alk.</td>
</tr>
<tr>
<td>hamradio</td>
<td>amatőr rádiózáshoz kapcsolódó csomagok</td>
</tr>
<tr>
<td>interpreters</td>
<td>interpreterek (értelmezők)</td>
</tr>
<tr>
<td>kde</td>
<td>KDE grafikus felülethez kapcsolódó csomagok</td>
</tr>
<tr>
<td>libdevel</td>
<td>dinamikus program-könyvtáarak fejlesztői fájljai</td>
</tr>
<tr>
<td>libs</td>
<td>dinamikus program-könyvtárak</td>
</tr>
<tr>
<td>mail</td>
<td>elektronikus levelezés</td>
</tr>
<tr>
<td>math</td>
<td>matematikai programok</td>
</tr>
<tr>
<td>misc</td>
<td>egyéb, a többi szekcióba nem sorolható csomagok</td>
</tr>
<tr>
<td>net</td>
<td>hálózathoz kapcsolódó csomagok</td>
</tr>
<tr>
<td>news</td>
<td>hírcsoportok, hírolvasás (network news)</td>
</tr>
<tr>
<td>oldlibs</td>
<td>régebbi (libc5-höz) tartozó program-könyvtárak</td>
</tr>
<tr>
<td>othersofs</td>
<td>más operációs rendszerek fájljaihoz, fájlrendszereihez való hozzáférés</td>
</tr>
<tr>
<td>perl</td>
<td>PERL modulok</td>
</tr>
<tr>
<td>python</td>
<td>PYTHON modulok</td>
</tr>
<tr>
<td>science</td>
<td>tudományos kutatás</td>
</tr>
<tr>
<td>shells</td>
<td>parancsértelmezők</td>
</tr>
<tr>
<td>sound</td>
<td>hang keltés, zene lejátszás</td>
</tr>
<tr>
<td>tex</td>
<td>a tex (főként matematikusok által kedvelt) szövegszerkesztő bővítményei</td>
</tr>
<tr>
<td>text</td>
<td>szövegfeldolgozás</td>
</tr>
<tr>
<td>utils</td>
<td>hasznos segédprogramok</td>
</tr>
<tr>
<td>web</td>
<td>WWW szolgáltatáshoz kapcsolódó csomagok</td>
</tr>
<tr>
<td>x11</td>
<td>X11 grafikus környezethez kapcsolódó csomagok</td>
</tr>
</tbody>
</table>
A Debian az előző három szempont figyelembevételével a következő könyvtárakat és fájlokat használja a csomagok és a csomagokra vonatkozó jellemzők tárolására:

Csomagok jellemzőinek tárolása:
- **dists** a csomagok disztribúcióhoz való rendelése
- **etch**
- **lenny**
 - **contrib**
 - **main**
 - **binary-<arch>**
 - **...**
 - **binary-i386**
 - **Release**
 - **Packages, Packages.bz2, Packages.gz**
 - **source**
 - **Release**
 - **Sources, Sources.bz2, Sources.gz**
 - **non-free**
 - **Release, Release.gpg**
 - **squeeze**
 - **stable, testing, unstable** szimbolikus linkek az adott verzióra

A sémában a könyvtárak mellett az alábbi fájlok használatosak:
- **Release:** az aktuális kiadásra vonatkozó információk, illetve a nyilvántartásban használt fájlokra vonatkozóan ellenőrző összegek
- **Release.gpg:** a Release fájlhoz tartozó aláírás
- **Packages:** az adott részfába tartozó összes bináris csomag vezérlő információi egyetlen fájiban (illetve ez tömörítve is megtalálható) + csomagonként a csomag helyére vonatkozó hivatkozás
- **Sources:** az adott részfába tartozó összes forrás csomag vezérlő információi egyetlen fájiban (illetve ez tömörítve is megtalálható) + csomagonként a csomag helyére vonatkozó hivatkozás

A Packages fájlban tehát benne van a csomagokban lévő vezérlő információ, amely ki van egészítve egyéb mezőkkel. Ez a korábbiakban példaként bemutatott „mc” csomag esetében a következő:
A csomag elérési útvonalát, méretét, és MD5 ellenőrző összegét is tartalmazza. A Packages fájl frissíthető a csomagokban lévő vezérlő információk, illetve a csomagok elérhetőségének együttes megadásával. A Sources fájl jellegét tekintve hasonlít a Packages fájra. Annyi a különbség, hogy nem a bináris csomagok jellemzőit, hanem a forráscsomagok jellemezőit tartalmazza.

Csomagok tárolása:
- **pool** a csomagok helye
 - contrib
 - main
 - 2
 - ...
 - lib*
 - ...
 - m
 - m-tx
 - ...
 - mc
 - mc_4.6.1-6_i386.deb
 - ...
 - mytop
 - ...
 - z
 - non-free

A csomagok tárolása is egy hierarchikus fa struktúrában történik. A tárolás módja függetleníthető a disztribúciótól, így csak a licenc szerint vannak a csomagok szétválogatva. Ezen belül pedig a csomag első karaktere (betűje) szerint további alkönyvtárakat találunk. A legutolsó szint a hierarchiában a csomag neve. Ezen belül találhatjuk meg a csomagot a korábban definiált név konvenciónak megfelelően. Az előző felsorolás a pool/main/m/mc részfájton belül lesz megtalálható, az elágazásoknál utalva az egyéb lehetőségekre.

A csomagok efféle tárolásának egyik fontos előnye, hogy egy helyen lehet tárolni a különböző terjesztésekhez (stable, testing, unstable) tartozó csomagokat. Az előző példánál maradva az összes mc nevű csomag a pool/main/m/mc könyvtáron belül lesz megtalálható. A másik fő előny, hogy könnyen lehet „szeparálni” az egyes csomagokat és azokat külön adathordozóra elhelyezni. Ez a folyamat egyszerű másolással és a Packages fájlok újra gyártásával megvalósítható.

4.6.4. A csomagkezelés parancsai

A jól megtervezet csomagghierarchiához kell, hogy tartozzanak olyan alkalmazások, amelyek segítségével a csomagok kezelése könnyen kivitelezhető.
Egy csomagkezelő alkalmazás legfontosabb feladatai:

- a csomagok épségének és digitális aláírásának ellenőrzése
- a csomagok jól áttekinthető listázása
- az egyszerű telepítés, frissítés, eltávolítás megvalósítása
- a csomagok közti függőségek, ütközések figyelése
- az elérhető csomagok listájának frissítése

A Debian GNU/Linux alap csomagkezelője a dpkg. Ennek a segítségével parancssorból megvalósíthatók a csomagokkal kapcsolatos műveletek, sőt akár a csomag létrehozása is.

A parancs fontosabb lehetőségei:

- `dpkg -i | --install <package_file>`: csomag telepítése
- `dpkg --unpack <package_file>`: csomag kicsomagolása
- `dpkg --configure <package>`: csomag beállítása
- `dpkg -r | --remove <package>`: csomag törlése
- `dpkg -P | --purge <package>`: csomag törlése konfigurációval együtt
- `dpkg -p | --print-avail <package>`: csomag jellemzőinek megjelenítése
- `dpkg -l | --list <name-pattern>`: csomagok listázása név alapján
- `dpkg -L | --listfiles <package>`: csomag tartalmának listázása
- `dpkg -S | --search <name-pattern>`: keresés csomagok tartalmában fájlnév illeszkedés alapján
- `dpkg -get-selections > <package-list>`: telepített csomagok listázása
- `dpkg --clear-selections`: a csomag kiválasztás törlése
- `dpkg --set-selections < <package-list>`: csomagok kijelölése telepítésre

Az előzőekben felsorolt parancsok esetében a paraméterek jelentése:

- `<package>`: egy csomag rövid neve
- `<package_file>`: egy csomag teljes neve a .deb kiterjesztéssel együtt
- `<name-pattern>`: keresési minta
- `<package-list>`: tetszőleges fájl, amely a csomagok neveit és állapotaikat tartalmazza

A dpkg parancs az előzőeken kívül még nagyon sok lehetőséggel rendelkezik. Például a parancs segítségével lehetséges saját csomag készítése is. Elsősorban olyankor használatos, amikor egyedileg történik csomagok telepítése vagy eltávolítása.

Egy csomag telepítésekor a következő történik:

- a csomag vezérlő információinak kiszedése a csomagból
- amennyiben a csomagnak egy korábbi változata telepítve van a rendszerben, akkor a korábbi csomag prerm szkriptjének futtatása
- a csomagban lévő preinst szkript futtatása, hogyha létezik
- a csomag tartalmának a kicsomagolása (a régi fájlok mentése)
• amennyiben a csomagnak egy korábbi változata telepítve volt a rendszerben, akkor a korábbi csomag postrm szkriptjének futtatása
• az új csomag konfigurációs fájljainak kicsomagolása
• a csomagban lévő postrinst szkript futtatása, hogyha létezik

A dpkg parancs esetében definiálhatunk különböző állapotokat. Ezek lehetnek a kiválasztással összefüggőek, illetve ettől függetlenek. Az állapot mindegyik csomagra jellemző.

A kiválasztástól független állapotok:
• installed a csomag sikeresen kicsomagolva és konfigurálva lett
• half-installed a csomag telepítése elkezdődött, de nem fejeződött be
• not-installed a csomag nincs telepítve
• unpacked a csomag sikeresen kicsomagolva lett, de nincs konfigurálva
• half-configured a csomag konfigurálása elkezdődött, de nem fejeződött be
• config-files csak a csomaghoz tartozó konfigurációs fájlok léteznek

A kiválasztás segítségével adhatjuk meg, hogy egy csomag egy művelet elvégzése után másik állapotba kerüljön. Itt a következő lehetőségek vannak:
• install a csomag telepítésre van kijelölve
• deinstall a csomag törlésre van kijelölve (a konfigurációs fájlok nem törlődnek)
• purge a csomag törlésre van kijelölve a konfigurációs fájlokkal együtt
• hold a csomag jelenlegi állapotának a megtartása

Debian GNU/Linux rendszerben léteznek a dpkg-re épülő magasabb szintű csomag kezelők (frontend-ek). Ezek közül a leggyakrabban használt az APT (Advanced Packaging Tools).

Az APT segítségével van arra lehetőségünk, hogy hálózati csomag forrásokat használjunk. Az APT esetében fontos konfigurációs fájl a /etc/apt/sources.list. Ebben a fájiban adhatjuk meg, hogy milyen hálózati erőforrásokból akarunk csomagokat telepíteni. A fájl egy sorának felépítése a következő sémát követi:

type uri distribution section1 section2 ...

Az egyes mezők jelentése a következő:
• type: az erőforrás típusát jelenti, értéke a deb vagy a deb-src lehet. A deb utal a bináris csomagok lelőhelyére, a deb-src a forráscsomagokéra.
• uri: tetszőleges URI (Uniform Resource Identifier)
• distribution: egy disztribúció vagy változat neve
• section[12...]: csomagok licenc szerinti csoportja

Példák erőforrás megadásra:
deb file:/mnt/package/debian stable main contrib non-free
deb ftp://ftp.hu.debian.org/debian/ lenny main non-free contrib
deb http://kami.duf.hu/debian/ lenny main contrib non-free
Az APT esetében használhatjuk az alábbi helyi és hálózati erőforrásokat:

- file
- cdrom
- ftp
- http

Amennyiben tehát szeretnénk elérni egy APT erőforrást, első lépésben a megfelelő bejegyzést kell elhelyeznünk a /etc/apt/sources.list nevű fájlból. Amennyiben szeretnénk saját tükörszervezet létrehozni, azt egyszerűen megtehetjük a „debmirror” parancs használataival. A parancs képes arra, hogy adott helyről a paraméterként átadott dizstribúciót tükrözzze egy adott gépre.

debmirror -v --method=ftp --passive
-a i386,amd64 -d lenny -s main
--progress --host=ftp.hu.debian.org /mnt/data/debian

Az előző parancs az i386, illetve az amd64 architektúra esetében a lenny dizstribúciójhoz tartozó main csoportba sorolható csomagokat tölti le ftp-n keresztül az ftp.hu.debian.org-ról. Amennyiben előállítjuk a csomagok tárolásánál bemutatott módon az egyes könyvtárakat és fájlokat, abban az esetben máris kész van a csomag lelőhely. Ezt pedig egyszerűen megoszthatjuk egy web szerver vagy egy ftp szerver felhasználásával.

Ahhoz, hogy csomagokat érjünk el APT forrásból, szükségünk van az apt-get parancsra. Az apt-get parancs fontosabb lehetőségei:

- apt-get update # csomag cache frissítése
- apt-get upgrade # új csomagok telepítése
- apt-get dselect-upgrade # új csomagok telepítése a dselect parancshoz hasonlóan
- apt-get dist-upgrade # dizstribúció frissítése
- apt-get install <package> # adott csomag telepítése
- apt-get remove <package> # adott csomag törlése (konfigurációt nem)
- apt-get remove --purge <package> # adott csomag törlése konfigurációs fájlokkal együtt
- apt-get source <package> # forrás csomag letöltése és kicsomagolása
- apt-get clean # letöltött csomagok törlése

Miután az APT forrásokat beállítottuk, utána szükséges az apt-get update parancs használata. A parancs letölti a beállított források esetében a Packages és a Sources fájlokat. Ezután van arra lehetőség, hogy az újonnan beállított helyekről telepítsünk vagy a rendszerünket frissítsük.
Az APT működését befolyásolhatjuk a /etc/apt/apt.conf segítségével.

APT::Default-Release "5.0";
Acquire
{
 http {
 Proxy "http://proxy.duf.hu:3128";
 Proxy::kami.duf.hu "DIRECT"
 };
 ftp {
 Passive "true";
 };
}
APT::Cache-Limit 16777216;

Abban az esetben, hogyha sok APT bejegyzésünk van előfordul, hogy meg kell növelnünk a cache méretét. A példában 16MB-ra van beállítva a cache mérete. Beállíthatjuk, hogy milyen http proxy-t használja a hálózati csomagok eléréséhez, illetve mely szerverek esetében ne használja a proxy-t. Van arra is lehetőségünk, hogy ún. kevert disztribúciót használjunk. Ez annyit jelent, hogy bizonyos csomagokat a stable, másokat a testing és/vagy az unstable elemei közül választunk. Ebben az esetben fontos lehet az elsőbbségi sorrend felállítása az egyes disztribúciók elemei között. Ezt a /etc/apt/preferences fájl segítségével tehetjük meg.

Package: *
Pin: release a=lenny
Pin-Priority: 1000
Package: *
Pin: release a=squeeze
Pin-Priority: 900
Package: *
Pin: release a=sid
Pin-Priority: 800

Ebben az esetben az összes csomagra vonatkozóan állítjuk a prioritást. A lenny-ben lévő csomagok rendelkeznek a legnagyobb prioritással, a squeeze ennél kevesebb, a sid (unstable) csomagjai pedig a legkevesebbel. Természetesen a működéshez az kell, hogy az adott disztribúciókra utaló hivatkozások legyenek a /etc/apt/sources.list-ben.

Az apt-get parancs esetében megadhatjuk azt is telepítéskor, hogy melyik disztribúcióból vegye a csomagokat (amennyiben több is van az APT források között).

apt-get -t squeeze install mc

Az APT-hez kapcsolódik meg néhány további parancs:

- apt-cache csomag cache manipuláció, csomag keresés
- apt-cdrom: telepítő CD/DVD felismertetése
- apt-file csomag keresés és listázás
- apt-key a csomagok ellenőrzésénél használt kulcsok kezelése
Az apt-get mellett egyéb eszközök is léteznek a csomagok menedzselésére. Az egyik ilyen alkalmazás a dselect. Ez képes együttműködni az APT-vel, ugyanazokat a forrásokat tudjuk felhasználni mindkét esetben. A dselect esetében egy menüből választhatjuk ki az elvégzendő tevékenységeket:

0. [E]lérés \quad \text{Válassz elérési módot}
1. [F]rissít \quad \text{Frissíti az elérhető csomagok listáját, ha lehetséges.}
2. [V]álaszt \quad \text{Csomagok választása}
3. [T]elepít \quad \text{Kért csomagok telepítése, frissítése.}
4. [B]eállít \quad \text{Beállítatlan csomagok beállítása.}
5. [L]eszedés \quad \text{Nem kívánt szoftverek eltávolítása.}
6. [K]ilépés \quad \text{Kilépés a dselect programból.}

A program esetében ajánlott az egyes menüpontokon a felsorolt sorrendben végigmenni. Annyi előnye van az apt-get paranccsal szemben, hogy itt egyéb parancs nélkül el tudjuk olvasni az adott csomagra vonatkozó leírás mezőt, amely alapján eldönthetjük, hogy szükségünk van-e az adott csomagra.

Miután a csomagkezelő megfelelő módon konfigurálva lett, úgy elérhetjük a rendelkezésre álló csomagokat. Ahhoz, hogy a rendszerünk képes legyen adott hálózati feladatok ellátására ahhoz a megfelelő csomagok telepítésére van szükségünk. Illetve természetesen ezeket a szoftvereket a saját felhasználási igénynek megfelelően konfigurálnunk kell.
5. A diszk adminisztráció és parancsai

5.1. A diszk kezelés és lehetőségei

Egy rendszer telepítése előtt döntenünk kell a diszkjeink felhasználása felől. A könyvtárhierarchia egyes részei különböző méretű particiókat igényelnek. A pontos méretek természetesen függnek az adott felhasználási területtől. Amikor egy sémát tervezünk, akkor legalább a következő könyvtárat akarjuk célba vehetni a telepítése esetében:

- `/` mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)
- `/boot` max. 100 MB, a kernel, initrd és a boot loader számára szükséges hely
- `/home` a felhasználók adatai számára fenntartott hely igény szerint
- `/usr` a felhasználói programok számára fenntartott hely igény szerint
- `/tmp` átmeneti fájlok tárolása, legalább 500 MB javasolt, felhasználás függvénye
- `/var` változó adatok, napló fájlok, igény szerint

Természetesen dönthetünk úgy, hogy az előzőekben felsorolt könyvtárakat nem külön particiókra helyezzük, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, nehogy „hátrányosan befolyásolják” egymás működését. Néhány példa, amely igazolja a particiók külön választását:

A `/var` könyvtár külön választani a `/`-tól, nehogy a naplófájlok kitöltsék a teljes particiókra helyezett helyeket, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy a particiók külön választását:

A `/tmp` mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

A `/boot` mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

Természetesen dönthetünk úgy, hogy az előzőekben felsorolt könyvtárakat nem külön particiókra helyezzük, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, nehogy „hátrányosan befolyásolják” egymás működését.

Néhány példa, amely igazolja a particiók külön választását:

A `/var` könyvtár külön választani a `/`-tól, nehogy a naplófájlok kitöltsék a teljes particiókra helyezett helyeket, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy a particiók külön választását:

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

Természetesen dönthetünk úgy, hogy az előzőekben felsorolt könyvtárakat nem külön particiókra helyezzük, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy „hátrányosan befolyásolják” egymás működését.

Néhány példa, amely igazolja a particiók külön választását:

A `/var` könyvtár külön választani a `/`-tól, nehogy a naplófájlok kitöltsék a teljes particiókra helyezett helyeket, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy a particiók külön választását:

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

Természetesen dönthetünk úgy, hogy az előzőekben felsorolt könyvtárakat nem külön particiókra helyezzük, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy „hátrányosan befolyásolják” egymás működését.

Néhány példa, amely igazolja a particiók külön választását:

A `/var` könyvtár külön választani a `/`-tól, nehogy a naplófájlok kitöltsék a teljes particiókra helyezett helyeket, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy a particiók külön választását:

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

Természetesen dönthetünk úgy, hogy az előzőekben felsorolt könyvtárakat nem külön particiókra helyezzük, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy „hátrányosan befolyásolják” egymás működését.

Néhány példa, amely igazolja a particiók külön választását:

A `/var` könyvtár külön választani a `/`-tól, nehogy a naplófájlok kitöltsék a teljes particiókra helyezett helyeket, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy a particiók külön választását:

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

Természetesen dönthetünk úgy, hogy az előzőekben felsorolt könyvtárakat nem külön particiókra helyezzük, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy „hátrányosan befolyásolják” egymás működését.

Néhány példa, amely igazolja a particiók külön választását:

A `/var` könyvtár külön választani a `/`-tól, nehogy a naplófájlok kitöltsék a teljes particiókra helyezett helyeket, hanem bizonyosokat összevonunk. Vigyáznunk kell azonban arra, hogy a particiók külön választását:

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)

A megadott particiók mérete legalább néhány GB (mérete függ attól, hogy a felhasználói programokat külön helyre rakjuk-e)
és csak megfelelő jelszó vagy kulcs megadása után érhetők el. A kernel device mapper speciális eszköze (dm-crypt) segítségével érhetjük el a rajta lévő adatokat.

• **LVM (Logical Volume Management)** használata. Ebben az esetben a fizikai kötetekből kötetcsoportokat képezünk, majd ezeket felosztjuk logikai kötetekre. Ezeket a logikai köteteket használjuk az adataink tárolására. Fontos előnye, hogy a logikai kötetek átméretezhetők.

• **Szoftveres RAID (md)** használata. A Linux lehetővé teszi azt, hogy több fizikai kötetet összefogjunk, és szoftveres úton megoldjuk a redundáns adattárolást.

• **EVMS (Enterprise Volume Management System)** használata. A Debian telepítője ezt a speciális módszert nem támogatja. Akár parancsosoros, ncurses alapú, vagy grafikus felületen keresztül is megoldható a segítségével a diszk adminisztráció. Képesen vagyunk a RAID illetve LVM logikai köteteket is felhasználni a lemezkezelés során. Főként sok diszket tartalmazó robusztus rendszerek esetében ajánlott.

5.2. A Szoftveres RAID (md)

A RAID (Redundant Array of Independent Disk) egy fontos technológia az adatok tárolása esetében. A számítógépeken levő merevlemez könnyen és gyakran meghibásodhat. Ezért fontos, hogy az adataink ne csak egy eszközön, hanem több helyen legyenek tárolva. A RAID a redundáns tárolás mellett az I/O műveletek gyorsítására is kiválóan alkalmas.

A RAID-nek létezik hardveres és szoftveres megvalósítása is. A hardveres implementáció esetében a vezérlőkártya feladata a RAID tömb kezelése és a párhuzamos írási műveletek végrehajtása. Legfőbb előnye, hogy ebben az esetben a lemez I/O művelet nem terheli a CPU-t. Hátránya viszont az, hogy az ilyen kártyák ára százezer forint fölött kezdődik.

A RAID-nek létezik szoftveres megvalósítása is. Ebben az esetben az operációs rendszer egy összetevőjének a feladata, hogy megvalósítsa a RAID funkcióit. A Linux kernel esetében az MD (Multiple Device) driver látja el ezt a feladatot.

A RAID esetében különböző szinteket (RAID level) definiálhatunk:

• **RAID 0** (striping): A merevlemezt vagy partíciót meghatározott méretű részekre (sávokra) bontjuk. A RAID 0 esetében felváltva történik ezen sávok összefésülése. Így az adatok tárolása egyszerre több eszközre történik. Ezáltal az I/O műveletek gyorsulására számíthatunk. A RAID 0 azonban nem biztosít hibatűrőt. Ezért ha az eszközöink közül bármelyik meghiálandó, akkor az adatunk egy része elvész.

• **RAID 4** (striped set with dedicated parity): Ebben az esetben több merevlemez egymástól függetlenül működik. Legalább három diszkre van szükségünk a megvalósításához. Az egyik diszken történik a paritás információk tárolása. Lemez meghibásodás esetében ennek a felhasználásával lehetséges az adatok visszaállítása. Olvasási sebessége jó, viszont az írási művelet esetében a paritás diszk jelenti a szűk keresztmetszetet.

• **RAID 5** (striped set with distributed parity): Hasonlóan működik, mint a RAID 4, azzal a különbséggel, hogy a paritás információk nem egyetlen diszken, hanem az összesre szétosztva tárolódnak. Így kikűszöbölő a paritás meghajtó által jelentett szűk keresztmetszetet. Legalább három meghajtó szükséges hozzá, és kettő meghajtónyi tároló kapacitást biztosít. Az egyik legelterjedtebb RAID szint, mivel egyszerre biztosítja a redundáns tárolást, illetve az olvasási sebesség többszörözzését.

• **RAID 6** (striped set with dual distributed parity): Annyiban különbözik a RAID 5-től, hogy ebben az esetben a paritást nemcsak soronként, hanem oszloponként is képezik. Így három disz disetében is csak egy meghajtónyi kapacitást biztosít, viszont a segítségével kettő merevlemez meghibásodás is kiküszöbölhethető. A többletköltéségek miatt nem terjedt el.

• **RAID 1+0** vagy **RAID 10** (mirrored striping): Ebben az esetben legalább négy eszközre van szükségünk. Először párban kettőt-kettőt RAID1-be kapcsolunk, majd a ezeket kapcsoljuk össze RAID0-ával. Ezáltal ötvözzük a RAID0 és a RAID1 előnyeit. Kettő (nem tetszőleges) diszk meghibásodást is elvisel.

Az előző felsorolásban nem került bele az összes RAID szint, csak azok, amelyek a Linux kernel esetében léteznek, és felhasználhatóak. Ezek mellett létezik például RAID 2, 3, 50 is.

A telepítő kernele az előző felsorolásban szereplő szintek közül csak a RAID 0,1,5,6,10 szinteket támogatja.

A RAID esetében néhány fontos fogalommal tisztában kell lennünk:

• **szinkronizálás**: Amennyiben a RAID1 tömb valamelyik eleme meghibásodik, úgy a hibás merevlemezt pótolni kell. Miután megtörtént a pótlása fontos, hogy a másik diszk tartalma rá kerüljön. Amíg a két diszk között a szinkronizáció folyik, nem célszerű I/O igényes folyamatokat futtatni, mert ez önmagában is megerhelő a gép számára.

• **tartalék (spare) diszk**: A RAID0 kivételével van arra lehetőség, hogy a működő winchesterek mellé elhelyezzük egy tartalék diszket. Ez alapesebben nincsen használatban. Szerepe akkor fontos, amikor valamelyik diszkünk meghibásodik. Ebben az esetben, a tartalék eszköz a meghibásodott helyébe léphet, és megkezdődhet a diszk szinkronizálása és „beépítése” a RAID-be.

• **RAID állapot**: Ez utal a RAID illetve a benne lévő eszközök működésére. A „clean” állapot jelenti, hogy minden rendben működik. Amikor egy diszk meghibásodik, akkor a rendszer továbbra is működik, de átkerül „dirty” állapotba. Amennyiben a hibás diszket eltávolítottuk, úgy „degraded” állapotban kerülünk.

Ahhoz, hogy szoftveres RAID-et használjunk, szükségünk van az mdadm nevű
csomagra, illetve a benne lévő ugyanolyan nevű parancsra.

Példa RAID használatára az mdadm parancs segítségével

RAID1 tömő létrehozása

```
mdadm --create --verbose /dev/md0 --level=1
--raid-devices=2 /dev/sd[cd]
--spare-devices=1 /dev/sde
```

RAID leállítása

```
mdadm --stop /dev/md0
```

Eszköz eltávolítása

```
mdadm --fail /dev/md0 /dev/sdc
mdadm --remove /dev/md0 /dev/sdc
```

Eszköz hozzáadása

```
mdadm --add /dev/md0 /dev/sdc
```

A RAID-ben lévő eszközök állapotáról a /proc/mdstat fájl alapján tájékozódhatunk:

```
Personalities : [raid1]
md0 : active raid1 sdc[0] sdd[1]
4194240 blocks [2/2] [UU]
```

Az adott md eszközre vonatkozó beállításokat megtekinthetjük:

```
mdadm --detail /dev/md0
```

```
/dev/md0:
  Version : 00.90.03
  Creation Time : Wed Feb 27 07:37:10 2008
  Raid Level : raid1
  Array Size : 4194240 (4.00 GiB 4.29 GB)
  Device Size : 4194240 (4.00 GiB 4.29 GB)
  Raid Devices : 2
  Total Devices : 2
  Preferred Minor : 2
  Persistence : Superblock is persistent
  Update Time : Sat Mar  8 00:24:43 2008
  State : clean
  Active Devices : 2
  Working Devices : 2
  Failed Devices : 0
  Spare Devices : 0
  UUID : b17bc19f:8da2da7b:fab91c8b:5e7c77de
  Events : 0.2

  Number   Major   Minor   RaidDevice State
  0       8       32        0      active sync   /dev/sdc
  1       8       48        1      active sync   /dev/sdd
```
A szoftveres RAID egy olcsó megoldás arra, hogy adatainkat redundáns módon tároljuk. Éppen ezért használata bármilyen telepítés esetében javasolt, ahol rendelkezésre áll több diszkr. Elsősorban SATA vagy SCSI diszekkel ajánlott használni, az IDE esetében gyakran tapasztalhatunk például sebességbeli problémákat.

5.3. Az LVM

Az LVM egy magasabb absztrakciós réteget definiál, mint a hagyományos diszek vagy partíciók. A Linux kernel Device mapper támogatása teszi lehetővé a használatát. A 2.6-os kernelekben az LVM2 támogatás érhető el. Ahhoz, hogy a logikai kötetkezelést használjuk szükségünk van userspace-beli binárisokra (lvm2 nevű csomag).

Az LVM működénének megértéséhez definiálnunk kell fogalmaikat, rövidítéseket:

- PV (Physical Volume): fizikai kötet (partíció)
- LV (Logical Volume): logikai kötet, amely egy kötetcsoporton belül helyezkedhet el
- LE (Logical Extent): egy logikai kötet előre meghatározott méretű része

Minta logikai kötetkezelésre

![Diagram](image.png)

Az előző ábra bemutatta, hogy a logikai kötettek és a fizikai kötettek hogyan kapcsolódnak egymáshoz.

Az LVM legfontosabb előnyei, tulajdonságai:

- több lemez összefűzhető egy „nagy méretű” kötetté
- a kötetcsoportok működés közben átméretezhetők, új diszek adhatók a kötetcsoporto, illetve meglévők vehetők el belőle
• a logikai kötetek átméretezhetők újabb LE-k hozzáadásával vagy elvételével
• lehetséges ún. pillanatfelvétel (snapshot) készítése a logikai kötetekről, amelyet az LVM2 esetében írni is és olvasni is lehet
• a logikai kötetek áthelyezhetők közben másik fizikai kötetre
• a logikai köteteket sávokra lehet bontani és ezeket a RAID0-hoz hasonlóan el lehet osztani a fizikai köteteik között
• egy logikai kötetet lehet tükrözni, és ezzel a RAID1-hez hasonló működést lehet elérni
• van arra is lehetőség, hogy kötetcsoportokat osszunk több részre vagy többet egyesítsünk. Ebben az esetben feltétel az, hogy a kötetcsoporton belül ne legyenek hozzárendelt logikai kötetei.

Az LVM használata egyszerűsíti és hatékonyabbá teszi a lemezkezelést főleg abban az esetben, amikor sok diszkkel rendelkezünk.

A rendszerünk sebességét befolyásolja az, hogy milyen a viszony a fizikai illetve a logikai köteteik között.
• A lineáris leképezés (linear mapping) esetében egy logikai kötet első része egy fizikai köteten található, míg a második fele egy másik fizikai köteten. Vagyis tekinthetünk rá úgy, mint kettő fizikai partíció egymás után történő összefűzése. Így könnyen előfordulhat, hogy a lemezeink közül csak az egyik dolgozik, a másik nem végez semmilyen műveletet adott fájl íráskor vagy olvasáskor.
• A sávokra való leképezés (striped mapping) esetében a logikai kötet egymás után következő részei nem egy diszkről kerülnek ki, hanem felváltva a rendelkezésre álló fizikai köteteik közül. Ez jelentős mértékben javíthatja a rendszerünk teljesítményét.

A következőkben szeretnék bemutatni egy példát LVM használatára:
• A particiók és eszközök felhasználási sémájának megtervezése
• Fizikai kötetek létrehozása: pvcreate /dev/sda2 /dev/sdb
• Kötetcsoport(ok) létrehozása: vgcreate vg1 /dev/sda2 /dev/sdb
• Kötetcsoport(ok) frissítése: /etc/init.d/lvm restart
• Logikai kötetek létrehozása: lvcreate -L 5g -n voll vg1
• Fájlrendszer létrehozása: mkfs.ext3 /dev/mapper/vg1_voll
• Fájlrendszer csatlakoztatása: mount /dev/mapper/vg1_voll /mnt/voll

Az LVM-el kapcsolatban fontos megemlíteni, hogy nem biztosít redundáns adattárolást. Eppen ezért a gyakorlatban valamilyen hibatűrő RAID szinttel együtt ajánlott használni. Egy logikai kötet maximális mérete 2.6-os kernel esetében 32 bites rendszerben 16TB, 64 bites rendszerben pedig 8EB.

A szoftveres RAID esetében gyakorlatilag az mdadm parancs segítségével meg tudjuk oldani a RAID-el kapcsolatos műveleteket. Ezzel szemben az LVM2 esetében több parancsunk is van. A parancsokat csoportosíthatjuk aszerint, hogy fizikai köteteikhez, kötetcsoportokhoz vagy logikai köteteikhez kapcsolódnak. A parancsok nevéből erre egyszerűen következtethetünk.
A fizikai kötetekhez kapcsolódó parancsok:
- pvs: fizikai kötetekre vonatkozó információk összegzése
- pvscan: fizikai kötetek keresése a diszkeken
- pvdisplay: fizikai kötetek jellemzőinek megtekintése
- pvcreate: fizikai kötet létrehozása
- pvchange: fizikai kötet attribútumainak megváltoztatása
- pvmove: PE-k mozgatása másik fizikai kötetre
- pvremove: fizikai kötet megszüntetése. Ez után a partíció már nem használható az LVM-el.
- pvresize: fizikai kötet átméretezése (miután pl. az fdisk-el a partíciót átméreteztük)

A kötetcsoportokhoz kapcsolódó parancsok:
- vgs: kötetcsoportokra vonatkozó információk összegzése
- vgsck: kötetcsoportok keresése a diszkeken
- vgdisplay: jellemzőinek megtekintése
- vgcreate: kötetcsoport létrehozása
- vgchange: kötetcsoport attribútumainak megváltoztatása
- vgrename: kötetcsoport átnevezése
- vgsplit: kötetcsoport két részre való hasítása
- vgmerge: kettő kötetcsoport egyesítése
- vgextend: kötetcsoport méretének növelése
- vgreduce: kötetcsoport méretének csökkentése
- vgck: kötetcsoportra vonatkozó metaadatok ellenőrzése
- vgmknodes: a /dev könyvtárban a kötetcsoportokhoz tartozó eszközfájlok létrehozása
- vgconvert: LVM1 kötet konvertálása LVM2 kötetté
- vgexport: kötetcsoport elrejtése
- vgimport: rejtett kötetcsoport újra ismertté tétele
- vgremove: kötetcsoport törlése

A logikai kötetekehez kapcsolódó parancsok:
- lvs: logikai kötettekre vonatkozó információk összegzése
- lvscan: logikai kötetek keresése a diszkeken
- lvdisplay: logikai kötetek jellemzőinek megtekintése
- lvcreate: logikai kötet létrehozása
- lvchange: logikai kötet attribútumainak megváltoztatása
- lvrename: logikai kötet átnevezése
- lvextend: logikai kötet méretének növelése
- lvreduce: logikai kötet méretének csökkentése
- lvresize: logikai kötet átméretezése
- lvconvert: logikai kötet konvertálása (linear, mirror, snapshot módok között)
- lvremove: logikai kötet megszüntetése

A parancsok neveiből látszik, hogy a fejlesztők egy előre definiált sémát követtek a parancsok neveinek meghatározásakor.
5.4. Egy RAID1-et, illetve LVM2-t együttesen használó rendszer telepítése

Amikor egy rendszert telepítünk nem tudjuk pontosan azt, hogy az új rendszert mire fogjuk használni a későbbiekben. Előfordulhat az, hogy a használt fizikai partíciók méretét nem megfelelően választjuk meg. Az előző fejezet alapján láthatjuk, hogy az LVM segítségével az efféle problémák kiküszöbölhetőek. Sőt egyes fájlrendszerök esetében megoldható az is, hogy működés közben átméretezzük a fájlrendszert.

Tegyük fel, hogy rendelkezünk négy darab diszkkel, amelyeket a /dev/sda, /dev/sdb, /dev/sdc, /dev/sdd eszközfájlokon keresztül érhetünk el. A diszkek mérete és típusa legalább páronként megegyezik. A /dev/sda és a /dev/sdb eszközök kettő partícióra lennének osztva:

```
/dev/sda1 100M RAID típusú (FD)
/dev/sda2  fennmaradó szabad hely RAID típusú (FD)
```

A /dev/sdc és /dev/sdd nem lenne particionálva, hanem csak RAID1-be összekapcsolva. A /dev/sda1 a /dev/sdb1-el lenne RAID1-be kapcsolva, a /dev/sda2 pedig a /dev/sdb2-vel. Ez utóbbi pedig LVM segítségével össze lenne kapcsolva a /dev[/cd]-ből képzett RAID1-el.

A Debian 5.0 telepítő menürendszere nem támogatja azt, hogy diszkeket használjunk partíciós tábla nélkül. Azonban parancsok segítségével ez is kivitelezhető.

Telepítsük a Debian GNU/Linux 5.0-t a szokásos módon, majd jussunk el a telepítő menüből a „Lemezek particionálása” menü pontig (De ezt még ne futtassuk.). Ajánlott expert módban végezni a telepítést. Ebben az esetben az előzőekben definiált sémát nem a telepítő segítségével, hanem parancsok felhasználásával fogjuk megoldani.

ALT-F2 billentyükombinációval átválthatunk egy második virtuális konzolra, ahol ENTER megnyomására kapunk egy root shellt. Itt a következő parancsokkal az előzőekben definiált séma kivitelezhető:

- fdisk /dev/sda a kettő partíció létrehozása és típusának beállítása FD-re (RAID auto detect)
- sfdisk -d /dev/sda | sfdisk /dev/sdb a /dev/sda diszken lévő partíciós tábla átmásolása /dev/sdb eszközre
- mknod /dev/md0 b 9 0
- mknod /dev/md1 b 9 1
- mknod /dev/md2 b 9 2
 mivel nem léteznek az egyedi md eszközöknek megfelelő fájlok, ezért azokat létre kell hozni
- chmod 660 /dev/md[0-2]
- chown root.6 /dev/md[0-2]
a létrehozott eszközfájlok tulajdonjogának és jogosultságainak beállítása. Mivel a disk nevű csoport itt még nem létezik, ezért a GID-jét használom.
- modprobe dm-mod
- modprobe raid1
 a Device mapper és a RAID1 támogatás betöltése
- mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sd[ab]1
- mdadm --create /dev/md1 --level=1 --raid-devices=2 /dev/sd[ab]2
mdadm --create /dev/md2 --level=1 --raid-devices=2 /dev/sd[cd]

három RAID1 létrehozása

- pvcreate /dev/md[12]
 fizikai kötet létrehozása a RAID1 eszközökön
- vgcreate vgmain /dev/md[12]
 a két fizikai kötetből a „vgmain” kötetcsoport létrehozása
- lvcreate -L 2000m -n lvroot vgmain
- lvcreate -L 1000m -n lvvar vgmain
- lvcreate -L 500m -n lvswap vgmain

három logikai kötet létrehozása a „vgmain” kötetcsoporton belül. Az első neve „lvroot”, mérete 2000MB. A második neve „lvvar”, mérete 1000MB. A harmadik neve „lvswap”, mérete 500MB.

Miután ezeket a parancsokat kiadtuk, ALT-F1 megnyomásával visszaváłthatunk a telepítő menüjébe. Amikor a „Lemezek particionálása” menü kiválasztjuk, akkor a telepítő automatikusan érzéki a parancsok segítségével létrehozott RAID-et, illetve logikai köteteket. Így csak annyi a dolgunk, hogy az egyes logikai köteteknél kiválasszuk a felhasználás módja esetében a megfelelő fájlrendszert, és ezután a többi szokásos telepítési lépést elvégezzük.

A /dev/md0 legyen a /boot-ban csatlakoztatva, a /dev/mapper/vgmain-lvroot (vgmain kötetcsoporton belüli lvroot logikai kötet) pedig a / fájlrendszer. A /dev/mapper/vgmain-lvvar a /var alá legyen csatlakoztatva, a /dev/mapper/vgmain-lvswap pedig virtuális memóriaként legyen használva.

Miután a telepítés befejeződött, és az új rendszer elindult, egy dolog van még hátra. Alapértelmezésként a telepítő a GRUB-ot az első diszk (/dev/sda) MBR-jébe telepítette. Felteszem, hogy ennél a kérdésnél nem változtattuk meg a telepítő által adott beállítást. Akkor a rendszer nem lenne képes önállóan elindulni, mivel a GRUB csak a /dev/sda eszköz elejére lett telepítve. Azért, hogy a rendszerünk ez ellen is védve legyen a /dev/sdb eszköz esetében is telepítenünk kell a GRUB-ot. Ezt például a következő módon tehetjük meg:

- Bejelentkezünk root-ként a működő rendszerbe.
- Kiadjuk a grub parancsot, ezzel elindul a grub shell.
- Ezután pedig a következő parancsokat kell kiadnunk:
 device (hd0) /dev/sdb
 root (hd0,0)
 setup (hd0)
- Miután ez végrehajtódott, utána kiléphetünk a grub shell-ből a quit parancsaval.

A grub esetében a device parancssal módosítottuk, hogy melyik eszköz legyen a hd0. Ez egészen addig marad érvényben, amíg ki nem lépünk a grub shellből. A root parancssal adjuk meg, hogy melyik diszk melyik partíciójára települjön a GRUB. A GRUB 0-tól kezdi az elsődleges partíciók sorszámozását, nem pedig 1-től ahogyan a Linux kernel. Ennél fogva a GRUB ide helyezi a saját fájljait, amelyek a setup parancs kiadása után másolódnak erre a helyre, illetve a GRUB a diszk MBR-jébe települ. (Mivel RAID1 van, ezért a GRUB fájljai már amúgy is elérhetők ebben a könyvtárban.)

A telepített rendszerünk tehát megvalósítja a redundáns adattárolást, és a logikai
kötet kezelést egyszerre. Amellett, hogy többszörösen vannak tárolva az adataink, arra is van lehetőségünk, hogy kihasználjuk az LVM adta lehetőségeket, előnyöket.

5.5. A diszk particionálás és a fájlrendszer létrehozás

5.5.1. A diszk particionálás

Amikor egy winchestert szeretnénk használni akkor nem feltétlenül egyben szeretnénk látni a teljes diszket. Éppen ezért az eszközt több részre, partícióra oszthatjuk. A lemezen lévő partíciókat jellemzőit a partíciós tábla tárolja. Ennek a típusa is többféle lehet. Mi a továbbiakban csak az msdos típusú partíciós táblával fogunk foglalkozni.

A lemezek particionálásának alapvető eszköze az fdisk parancs.

fdisk device

Az fdisk parancs indítása után a paraméterként átadott blokkos eszközön lehetséges a partíciós tábla módosítása. Miután a parancs elindul, akkor egy saját felületet biztosít a parancskok begépeléséhez. Az itt elérhető fontosabb parancskok:

• a: a boot flag (aktív vagy nem aktív) változtatása egy partíció esetében
• c: DOS kompatibilitás mód ki-be kapcsolása
• d: partíció törlése sorszám alapján
• l: az ismert partíció típusok listázása
• m: az elérhető parancsok listájának kiírása
• n: új partíció létrehozása
• o: üres partíciós tábla létrehozása
• p: a partíciós tábla jelenlegi állapotának kiírása
• q: kilépés mentés nélkül
• t: partíció típusának módosítása sorszám és típuskód alapján
• v: a partíciós tábla ellenőrzése
• w: a változások mentése

Az fdisk-nek létezik egy ncurses alapú frontend-je (cfdisk). Ez annyit jelent, hogy karakteres képernyőn menü-vezérelt módon képesek vagyunk a partíciós tábla manipulációjára. Ennélfogva a legtöbb ember számára jóval kényelmesebb a használata. A program annyit tesz, hogy az egyes menübeli eseményeknek megfelelően fdisk parancskokat hoz létre, majd ezeket futtatja le az fdisk segítségével.

Az sfdisk parancs szintén a partíciós tábla manipulációjára használható. Legfontosabb felhasználási lehetősége a partíciós tábla mentése illetve visszaállítása.
Partíciók mentése: `sfdisk -d /dev/sda > sda_PART`
Partíciók visszaállítása: `sfdisk /dev/sda < sda_PART`

Az sfdisk saját formátumot használ a mentésre. Az előző alfejezetben használt telepítési példa esetében a tartalma például a következő:

```
# partition table of /dev/sda
unit: sectors
/dev/sda1 : start= 63, size= 208782, Id=fd, bootable
/dev/sda2 : start= 208845, size= 8177085, Id=fd
/dev/sda3 : start= 0, size= 0, Id= 0
/dev/sda4 : start= 0, size= 0, Id= 0
```

A Linux szempontból fontos partíció tábla bejegyzés típusok a következők:

- `0x83` Linux
- `0x82` Linux swap
- `0x85` Linux extended
- `0x8e` Linux LVM
- `0xfd` Linux raid autodetect

Az előző felsorolásban a `0x` jelzi, hogy hexadecimális értékről van szó.

A lemezek particionálására használható meg a parted nevű program, vagy annak valamelyik frontend-je (gparted, qtparted).

5.5.2. A fájlrendszer létrehozás

Egy winchester esetében a partíció létrehozása önmagában még kevés. Ahhoz, hogy az adott területen adatokat tudjunk tárolni, szükségünk van arra, hogy az adott partíció valamilyen Linux által ismert fájlrendszert hozzunk létre. Más operációs rendszerek esetében a fájlrendszert nemcsak fizikai köteten lehet létrehozni, hanem bármilyen blokkos eszközön. Ilyenek lehetnek az adott területen létrehozott /dev/md[01...] eszközök, vagy pedig az LVM által definiált logikai kötettek.

A fájlrendszer létrehozását elvégeztével a következő lépések folyamán az adott lemezre a megfelelő fájlrendszert kell létrehozni, azaz a rendszeradatokat és a fájlrendszer struktúráját kell létrehozni a megfelelő Debian csomagokra.

```
  ext2/ext3  e2fsprogs
  reiserfs (3.6)  reiserfsprogs
  reiserfs (4.0)  reiser4progs
  xfs       xfsprogs
  jfs       jfsutils
```
A parancs fontosabb paraméterei:

```
mkfs [ -t fstype ] [ fs-options ] device [ blocks ]
```

Ahol:
- `-t fstype`: fájlrendszer típusa
- `fs-options`: az adott fájlrendszerre vonatkozó speciális beállítások
- `device`: az eszközfájl neve
- `blocks`: a fájlrendszernek szánt blokkok száma

Az mke2fs parancs fontosabb opciói:

```
mke2fs [ options ] device [ blocks ]
```

Ahol:
- `-b block-size`: blokkméret megadása
- `-c`: ellenőrzés
- `-i bytes-per-inode`: byte/i-node arány megadása
- `-j`: ext3 fájlrendszer létrehozása
- `-J`: ext3 journal opciók megadása
- `-L label`: lemezcímke megadása
- `-m number`: a rendszergazda számára fenntartott blokkok aránya (5%)
- `-N number-of-inodes`: az i-node-ok száma
- `-T fs-type` (news (4k), largefile (1M), largefile4 (4M))

Adott fájlrendszer létrehozásra használható további parancsok:
- `mkfs.reiserfs, mkreiserfs` reiserfs 3.6
- `mkfs.reiser4, mkreiser4` reiserfs 4.0
- `mkfs.xfs` xfs
- `mkfs.jfs, jfs_mkfs` jfs
- `mkfs.cramfs` cramfs
- `mkswap` swap
- `mkinitramfs` initramfs (gzippel tömörített cpio)
- `mkisofs` iso9660 fs
- `mkfs.msdos, mkfs.vfat, mkdosfs` FAT12, FAT16, FAT32
- `mkfs.ntfs, mkntfs` NTFS
- `mkfs.gfs, gfs_mkfs` GFS (Global FS)
- `mkfs.ocfs2` OCFS2 (Oracle Cluster FS)

Miután az adott fájlrendszert létrehoztuk, utána birtokba is vehetjük. Ahhoz, hogy az adott fájlrendszer használható legyen adatok tárolására (részé legyen a rendszerünknek) csatlakoztatnunk kell.
5.6. A fájlrendszerek ellenőrzése és csatlakoztatása

5.6.1. A fájlrendszer ellenőrzése

Mielőtt egy fájlrendszert csatlakoztatnunk ajánlott, hogy ellenőrizzük, hogy a fájlrendszer nyilvántartása rendben van-e. Ha ugyanis a fájlrendszerben valamilyen hiba keletkezett, abban az esetben a további műveletek csak tetézik a bajt. Fájlrendszer hiba bekövetkezhet például lemezez, lemezvezérlő vagy memória hiba miatt. De egy szabálytalan leállás (áramszünet, tápegység meghibásodás) esetében is megtörténhet.

A fájlrendszer ellenőrzés általános parancsa az `fsck` (filesystem check).

Az `fsck` parancs fontosabb paraméterei:

```
fsck [ -t fstype ] [ options ] device
```

Az opció közül fontos a `-a`, amely az automatikus javítást jelenti.

Az mkfs parancshoz hasonlóan léteznek olyan parancsok, amelyeknek a neve az `fsck` szóval kezdődik. Ezek esetében már nem kell megadni a `-t` kapcsoló után a fájlrendszer típusát. Ilyen például az `fsck.ext2`, `fsck.reiserfs`, ...

5.6.2. Fájlrendszer csatlakoztatása

Amennyiben a fájlrendszer ellenőrzése sikeresen végrehajtódott nyugodtan csatlakoztathatjuk a fájlrendszert. Bármilyen a kernel által támogatott fájlrendszer képesek vagyunk csatlakoztatni. Abban az esetben, hogyha az automatikus kernel modul betöltés engedélyezett, akkor a csatlakoztatás előtt nem kell a fájlrendszer típusának megfelelő kernel modult betölteni. Ellenkező esetben ezt meg kell tennünk, mivel ez szükséges feltétele a csatlakoztatásnak. Ahhoz, hogy valamilyen fájlrendszeret csatlakoztassunk, szükségünk van egy létező könyvtárra. Azt a könyvtárat, ahova egy fájlrendszeret csatlakoztattunk hivjuk csatolási pontnak (`mount` point).

A fájlrendszer csatlakoztatás általános parancsa a `mount`

Az `mount` parancs leggyakrabban használt alakja:

```
mount [ -t fstype ] device dir [ -o options ]
```

A device jelenti az eszközt, amit csatlakoztatni kell, a dir pedig a csatlakoztatási pontot. A mount parancsra rengeteg paraméteret van. Ezen paraméterek egy része függ a fájlrendszer típusától, míg a többi általános lesz a Linux „saját” fájlrendszerére. Az utóbbi alatt minden olyan fájlrendszer érték, amely alatt működik a Linux jogosultsági rendszer és a speciális fájl típusok létrehozhatók.

A `mount` parancs fontosabb opció párjai (a `-o` után vesszővel elválasztva írandók):

- `atime, noatime`: hozzáférési idő frissítése az i-node táblában
- `auto, noauto`: automatikusan kell-e csatlakoztatni (-a opció esetében)
- `dev, nodel`: engedélyezettek-e a speciális eszközfájlok
• exec, noexec: engedélyezettek-e a bináris fájl végrehajtása
• ro, rw: csak olvasható vagy írható-olvasható mód
• sync, async: szinkron vagy aszinkron I/O használata
• suid, nosuid: setuid bit engedélyezett-e
• user, nouser: normál felhasználó csatlakoztathatja-e

Azért, hogy ne kelljen minden esetben felsorolni mindegyik opciót, kitalálták azt, hogy legyen egy alapértelmezés. A defaults opció az előzőekben felsoroltak közül a következőket tartalmazza: atime, auto, dev, exec , rw, async, suid, nouser. Abban az esetben, hogyha az alapértelmezéstől csak egy-két opcióban térünk el használhatjuk a következő módon:
• defaults,noatime
• defaults,nodev,nosuid

Az előzőekben felsorolt párok mellett a mount esetében az alábbi opciókat is használhatjuk:
• bind: egy adott könyvtár más helyről történő elérése (a device paraméter helyett ebben az esetben egy létező könyvtárat kell megadni)
• loop: egy fájl tartalmának csatlakoztatása egy loopback device segítségével (pl.: iso fájl tartalmának elérése)
• remount: egy már korábban csatlakoztatott fájlrendszer újra csatlakoztatása
• grpquota, usrquota: lemezkvóta beállításához

Az alábbi kapcsolók is lehetségesek:
• -t: fájlrendszer típusának megadása
• -a: automatikus csatlakoztatás a /etc/fstab alapján
• -n: nem próbálja meg írni a /etc/mtab-ot
• -r: megegyezik a -o ro opcióval
• -w: megegyezik a -o rw opcióval

Példák mount használatára:
• mount -n -o remount,rw /
• mount -t reiserfs /dev/sdb1 /boot
• mount -t iso9660 debian.iso /mnt/iso -o loop,ro

Egyes fájlrendszerek esetében további opciók is lehetségesek:
• mount -t ext3 /dev/sdb2 /home -o rw,user_xattr,acl
• mount -t tmpfs tmpfs -o size=100M /var/tmp
• mount -t jfs /dev/sdb3 /mnt/test -o remount,ro,resize

Miután egy fájlrendszert sikeresen csatlakoztattunk, utána képesek vagyunk rajta adatokat tárolni. Figyeljünk arra, hogy a naplózó fájlrendszerek esetében amennyiben nem külső naplót használunk, az csökkenteni fogja a fájlrendszer méretét.

Amikor egy rendszert telepítünk azért is fontos lehet az egyes könyvtárait külön helyre tenni, mert abban az esetben van arra lehetőség, hogy a rendszer egyes részeit különböző mount opciókkal csatlakoztassuk.
Erre példa a következő felsorolás:

- `/ defaults`
- `/boot rw,nodev,noexec,nosuid`
- `/home rw,nodev,noexec,nosuid`
- `/tmp rw,noatime,nodev,noexec,nosuid`
- `/usr rw,nodev`
- `/var rw,noatime,nodev,noexec,nosuid`

Amennyiben valamelyik csatlakoztatott fájlrendszerre már nincsen szükségünk, abban az esetben leválaszthatjuk. A leválasztás parancsá az `umount`. A `mount` kapcsolói közül itt is használható a `-a`, `-n` illetve a `-t`.

Fontos dolog, hogy amikor a rendszer indul elsőként történik meg a root fájlrendszer csatlakoztatása, majd ezután jöhetnek az egyéb fájlrendszerek. Ahhoz, hogy valamilyen fájlrendszeret tudjunk csatlakoztatni gondoskodnunk kell arról, hogy az adott könyvtárat ahova a fájlrendszer csatlakoztatva van semmilyen alkalmazás ne használja. Tehát elsőként azokat az alkalmazásokat amelyek a csatlakoztatási pont alatt valamilyen fájl jön létre használók, azokat kell leállítani. Csak ezután következhet be a leválasztás. A rendszerleállításkor a root fájlrendszer leválasztása történik meg legutoljára.

Példa umount használatára:

- `umount -a -t reiserfs`

Jellegét tekintve a swap partíció vagy swap file használata kapcsolódik a `mount` parancshoz. Annyi a különbség, hogy ennek a tartalmát nem szoktuk közvetlenül olvasni. Vagyis itt csak a használatot kapcsoljuk be illetve ki.

`swapon /dev/sdb4`

`swapoff /dev/sdb4`

Abban az esetben, hogyha nem áll rendelkezésre szabad partíció, de van valahol szabad helyünk, akkor foglalhatunk helyet tárcsere céljára. Ahhoz, hogy egy fájlt képesek legyünk swap területként használni fontos, hogy folyamatosan legyenek az egyes blokkjai tárolva a diszken. Példa 500MB-os swapfile létrehozására és használatba vételére:

- `dd if=/dev/zero of=swapfile bs=1M count=500`
- `mkswap swapfile`
- `sync`
- `swapon swapfile`

5.7. A fájlrendszerek átméretezése

Amikor egy fájlrendszer létrehozunk, akkor az egy rögzített mérettel jön létre. Általában a fájlrendszer teljes mértékben kitölt egy partíciót vagy logikai kötetet. A LVM esetében láttuk, hogy logikai kötettek átméretezhetők, méretük parancsok segítségével növelhető és csökkenthető.

5.7.1. Fájlrendszer méretének a növelése

Amennyiben egy fájlrendszer méretét szeretnénk növelni, abban az esetben elsőként a fizikai vagy logikai kötet méretét kell növelni. Az LVM esetében ez nem okoz problémát, viszont a partíciók esetében igen. Ahhoz, hogy egy winchester partíciós tábláját módosítani tudjuk, elsőként le kell csatolni az összes
partíciót. Ez ugyanis feltétele annak, hogy a kernel módosítás után újra tudja olvasni a partíciós táblát. Ezután le tudjuk törölni a partíciót, majd a helyére egy ugyanolyan típusú, csak nagyobb méretűt hozhatunk létre. Nagyon fontos, hogy az új partíció kezdete megegyezzen a korábbi partíció kezdetével. Ezután kezdődhet a fájlrendszer méretének növelése.

Az egyes fájlrendszerek esetében ez a különböző parancsok segítségével történhet. Tegyük fel, hogy a /dev/sdb2 partíció méretét növeltük meg, és most a rajta lévő fájlrendszer méretét szeretnénk megnövelni:

ext2, ext3: resize2fs /dev/sdb2
reiserfs 3.6: resize_reiserfs /dev/sdb2
xfs: xfs_growfs /mnt/sdb2 (a csatolási pont a paraméter)
jfs: mount -t jfs /dev/sdb2 /mnt/sdb2 -o remount,rw,resize

Mindegyik parancs a partíció méretéig megnöveli a fájlrendszer méretét. Amennyiben nem ez a célunk paraméterek segítségével megadható a növelés mértéke.

5.7.2. Fájlrendszer méretének a csökkentése

Amennyiben helyet szeretnénk felszabadítani egy diszken vagy kötetcsoporton belül, úgy szükségünk van a partíció vagy logikai kötet méretének a csökkentésére. Csak akkorra méretcsökkentést tehetek, hogy az aktuálisan tárolt adatok a csökkentett fájlrendszerben is elférjenek. A csökkentés esetében fordított sorrendben kell eljárnani, mint azt a növeléskor tettük. Vagyis elsőként kell a fájlrendszert, majd pedig a tároló kötetet csökkenteni.

Az xfs és a jfs fájlrendszerek esetében nincsen arra lehetőség, hogy működés közben, vagy offline módon csökkentsük a fájlrendszer méretét. Tegyük fel, hogy van egy 500MB-os partíciónk (/dev/sdb1). Szeretnénk a méretét csökkenteni kb. 400MB-ra:

A ext2, ext3 esetében a resize2fs /dev/sdb2 [size] parancs segítségével lehet a fájlrendszer méretét csökkenteni akár működés közben is. A [size] paramétereként meg kell adnunk a blokkméretet, amire akarjuk a fájlrendszer csökkenteni. 1kB-os blokkméretet feltételezve 400000 körüli értéket kell itt megadnunk.

A reiserfs (3.6) esetében csak akkor tehetjük meg az átméretezést, hogyha a partíció nem aktív. Ebben az esetben a resize_reiserfs -s 100M /dev/sdb2 parancs segítségével a feladat kivitelezhető.

5.8. A fájlrendszerekhez kapcsolódó konfigurációs fájlok

Amikor a Linux indul, akkor általában a kernelnek parancssorban átadásra kerül, hogy melyik eszköz, melyik partícióját csatlakoztassa fel, mint root fájlrendszer. A GRUB esetében ilyen beállítások például:

kernel /boot/vmlinuz root=/dev/sda2
kernel /vmlinux root=/dev/mapper/vgmain-lvroot

Az adott eszköz esetében szükségünk van egy konfigurációs fájlra, amely a további fájlrendszer csatolási paramétereket adja meg. Ez a fájl a /etc/fstab.
Ebben beállíthatjuk, hogy hova és milyen csatlakoztatási paraméterekkel legyenek az egyes fájlrendszerfek csatlakoztatva. Természetesen a sikeres rendszerindulás feltétele, hogy kernel azt a fájlrendszeret, amelyek a rendszerbetöltő esetében megkap mint root fájlrendszeret, azt el tudja érni és a rajta lévő fájlrendszer típusát ismerje. Amennyiben ez a feltétel teljesül, akkor a /etc/fstab alapján folytatódnak a fájlrendszerek automatikus csatlakoztatása.

Példa /etc/fstab-ra:

```
# /etc/fstab: static file system information.
#
proc /proc proc defaults 0 0
/dev/md0 / reiserfs defaults,acl 0 1
/dev/sda1 /boot ext3 defaults 0 2
/dev/md1 /home reiserfs rw,acl,nosuid,nodev 0 2
/dev/mapper/vg-lvvar /var reiserfs defaults 0 2
/dev/scd0 /cdrom udf,iso9660 user,noauto 0 0
/dev/fd0 /floppy auto rw,user,noauto 0 0
```

A konfigurációs fájl esetében megkülönböztethetünk hat mezőt. A fájl egy sora egy fájlrendszer csatlakoztatásához szükséges paramétereket állítja be. A mezők jelentése balról jobbra haladva:

- 1. mező: a speciális eszköz vagy távoli fájlrendszer amit csatlakoztatni kell
- 2. mező: a csatlakoztatási pont
- 3. mező: a fájlrendszer típusa
- 4. mező: a fájlrendszer csatlakoztatási módja (mount parancs -o kapcsolója esetében használható opciók)
- 5. mező: kell-e biztonsági mentés (dump)
- 6. mező: kell-e ellenőrzést futtatni

Amennyiben a /etc/fstab nevű fájl adott sorában össze van rendelve egy csatlakoztatási pont egy eszközzel, illetve fájlrendszerkkel és azok csatlakoztatási paramétereivel abban az esetben a mount parancs kevesebb paraméterrel is használható. Ekkor csak az eszköz nevét vagy a csatlakoztatási pontot kell megadni a mount parancs után.

Példák mount parancs használatara az előző példában szereplő /etc/fstab nevű fájl alapul véve:

- mount /cdrom
- mount /dev/md1

Hasonló módon az umount parancs is használható. Amennyiben a mount parancsot paraméterek nélkül használjuk, úgy megmutatja a rendszer jelenleg csatlakoztatott eszközeit, illetve a csatlakoztatás paramétereit.
Példa mount parancs kimenetére:

```
/dev/md0 on / type reiserfs (rw,acl)
tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
procusbusb on /proc/bus/usb type usbfs (rw)
udev on /dev type tmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620)
/dev/sdal on /boot type ext3 (rw)
/dev/md1 on /home type reiserfs (rw,nosuid,nodev,acl)
/dev/mapper/vg-lvvar on /var type reiserfs (rw)
binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
```

A felcsatlakoztatott fájlrendszerek jellemzői megtekinthetők a /etc/mtab vagy a /proc-mounts segítségével is.
6. Saját kernel fordítása

6.1. Előkészületek a kernelfordításhoz

Az „Operációs rendszerek – Linux” jegyzetben a 7. fejezet a kernelről, illetve a általánosságban a kernel fordításról szól. Az olvasóról feltételezem, hogy az ott leírtakat ismeri, vagy más forrásból rendelkezik megfelelő szintű ismeretekkel. Ebben a fejezetben részletesen megismerkedünk a kernel lehetőségeivel, illetve megnézzük azokat a beállításokat, drivereket amelyek kapcsolódnak a számítógépes laborokban használt VMware virtuális gépekhez.

6.1.1. Mikor szükséges kernelt fordítani?

Általános szabályt nem túl egyszerű mondani. Néhány dolog, amely indokolhatja a saját kernel előállítását:

- a disztribúció készítői által kiadott kernel még nem támogatja az adott hardver eszközt
- a használt driverek közül valamelyikben biztonsági vagy működési hiba van
- az adott szolgáltatás, protokoll, hálózati támogatás nem lett belefordítva a kernelbe
- saját, speciális működési környezet, amely az „általános célú” kernellel nem működne (pl. hálózati rendszerindulás, Boot CD, …)
- valamilyen kiegészítő patch-e(ke)t szeretnének használni (pl.: grsecurity)
- nem akarjuk, hogy más is ismerje a kernelünk beállításait

Ha az előzőek közül több dolog is fennáll, akkor valószínűleg szükségünk van saját kernel fordítására. A saját kernel előnyei:

- többféle hardvereszközt támogathat
- optimalizálni lehet a hardverhez (pl. CPU utasításkészlet)
- kevesebb memória használat
- kevesebb driver, vélhetően kisebb hibalehetőség
- gyorsabb működés
- az újabb kernelben javítva lettek biztonsági hibák

Természetesen az operációs rendszer magjának a fordítása az egész rendszer működésére komoly hatást gyakorol. A dokumentációk átolvására után nyugodtan nekifoghatunk. Néhány fontos dolog, amelyet mindig szem előtt kell tartanunk:

- a kernelnek el kell tudnia érnie azt hardver eszközt, illetve azt a fájlrendszeret, ahol a root fájlrendszert található. (sikeres rendszerindulás feltétele)
- a konfigurálás előtt el kell döntenünk, hogy a rendszerindulást initrd (initial RAM disk) segítségével, vagy nékülé szeretnénk-e elvégezni
- azokról a támogatásokról, amelyekről nem tudjuk pontosan, hogy mi, de alapértelmezésként ajánlja a belefordítását, fogadjuk meg a tanácsát
6.1.2. A kernel fordítás szükségletei

Ahhoz, hogy kernelt tudjunk kicsomagolni, foltozni és fordítani Debian GNU/Linux rendszerben, szükségünk van néhány csomagra:

- libc6-dev általános C header fájlok
- libncurses-dev a make menuconfig használatahoz
- bzip2 bzip2 tömörítő
- patch javítások, módosítások futtatása
- binutils bináris segédprogramok (pl.: ld, as, ...)
- gcc, cpp GNU C fordító, C++ előfeldolgozó
- make GNU make a fordítási folyamat irányításához

Ezek az előfeltételek az apt-get install gcc make patch bzip2 libncurses-dev parancs hatására települnek a függőségi viszonyoknak köszönhetően. Az előző parancsban felsoroltak tehát minden esetben szükségesek. Ezek mellett a kernel fordítás használhat egyéb programokat is, melyek közül néhány alapértelmezésként telepítve is van a rendszerben.

A 2.6.31.9-as kernel esetében a fordítási függőségek a következők:

<table>
<thead>
<tr>
<th>Program (csomag)</th>
<th>Verzió</th>
<th>Ellenőrzés parancs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNU C (gcc)</td>
<td>3.2</td>
<td>gcc --version</td>
</tr>
<tr>
<td>GNU make</td>
<td>3.8</td>
<td>make --version</td>
</tr>
<tr>
<td>binutils</td>
<td>2.12</td>
<td>ld -v</td>
</tr>
<tr>
<td>util-linux</td>
<td>2.10o</td>
<td>fdformat --version</td>
</tr>
<tr>
<td>module-init-tools</td>
<td>0.9.10</td>
<td>depmod -V</td>
</tr>
<tr>
<td>e2fsprogs</td>
<td>1.41.4</td>
<td>tune2fs</td>
</tr>
<tr>
<td>jfsutils</td>
<td>1.1.3</td>
<td>fsck.jfs -V</td>
</tr>
<tr>
<td>reiserfsprogs</td>
<td>3.6.3</td>
<td>reiserfsck -V 2>&1</td>
</tr>
<tr>
<td>xfsprogs</td>
<td>2.6.0</td>
<td>xfs_db -V</td>
</tr>
<tr>
<td>pcmciautils</td>
<td>004</td>
<td>pccardctl -V</td>
</tr>
<tr>
<td>quota-tools</td>
<td>3.09</td>
<td>quota -V</td>
</tr>
<tr>
<td>PPP</td>
<td>2.4.0</td>
<td>pppd --version</td>
</tr>
<tr>
<td>isdn4k-utils</td>
<td>3.1pre1</td>
<td>isdnctrl 2>&1</td>
</tr>
<tr>
<td>nfs-utils</td>
<td>1.0.5</td>
<td>showmount --version</td>
</tr>
<tr>
<td>procps</td>
<td>3.2</td>
<td>ps --version</td>
</tr>
<tr>
<td>oprofile</td>
<td>0.9</td>
<td>oprofiled --version</td>
</tr>
<tr>
<td>udev</td>
<td>081</td>
<td>udevinfo -V</td>
</tr>
<tr>
<td>grub</td>
<td>0.93</td>
<td>grub --version</td>
</tr>
</tbody>
</table>

Az előző táblázatban szereplő csomagok egy része már a rendszer telepítését követően elérhető. Ilyenek például a fájlrendszerek kezeléséhez kötődő csomagok. Míg a listában szereplő egyéb csomagok csak speciális opciók
választása esetén szükségesek. Az opcionális csomagokat dőlt betűtípussal szerepelnek a táblázatban.

6.1.3. A kernel forrás előkészítése és foltozása

A továbbiakban a 2.6.31.9-es verziószámú vanilla kernel forráskódjának előkészítését és konfigurálását fogom bemutatni. A kernelről tudni kell, hogy állandóan változik, fejlődik. Az egyes verziók esetében újabb és újabb lehetőségek jelennek meg vagy avulnak el. Némely esetben az is előfordul, hogy a támogatások helye változik, tehát máshol találjuk az adott beállítást, mint a korábbi verziók esetében.

Az előkészítés, letöltés és ellenőrzés lépései:

• cd /usr/src
• mv linux `uname -r`
• wget \\
 __kernel.org/pub/linux/kernel/v2.6/linux-2.6.31.tar.bz2 \\

Miután a forrást, illetve a verzió javító patch-et és a digitális aláírásukat letöltöttük, ajánlott ellenőrizni, hogy rendben vannak-e. Ehhez a következőket kell tennünk:

• gpg --keyserver pgp.mit.edu --recv-keys 0x517D0F0E
Le kell töltenünk valamelyik publikus gpg kulcsszerverről az 0x517D0F0E azonosítóhoz tartozó publikus kulcsot, amely az <ftpadmin@kernel.org>-hoz tartozik.

Majd következhet az ellenőrzés:

• gpg --verify linux-2.6.24.tar.bz2.sign linux-2.6.24.tar.bz2
• gpg --verify patch-2.6.24.3.bz2.sign patch-2.6.24.3.bz2

Amennyiben rendben van ezt látjuk:
gpg: Signature made 2009. szept. 10., csütörtök, 00.40.47 CEST using DSA key ID 517D0F0E

Leellőttőink az ellenőrző kulcsaink azaz a <ftpadmin@kernel.org> kulcsokkal érkeznek rendben. Ezután következhet a forráskód kicsomagolása és a /usr/src/linux beállítása:

• tar xjf linux-2.6.31.tar.bz2
• ln -s linux-2.6.31 linux
• cd /usr/src/linux

Amennyiben 2.6.31-es kernelt szeretnénk fordítani, úgy a forráskód már elő lett készítve. Ezután következhet igény szerint a foltozás (patch-elés).

Ez után az adott verziószámhoz megfelelő egyéb foltokat is használhatunk:

• patch -p1 < ../grsecurity-2.1.14-2.6.31.9-200912191011.patch

Egy folt alkalmazásakor minden esetben a patch parancs standard bemenetére
kell a „szerkesztési parancsokat” átadni. A -p paraméter után megadott számot az határozza meg, hogy hány darab könyvtárat kell törölni a fájlhivatkozások elejéről.

A grsecurity patch első sora például:

diff -urNp linux-2.6.31.9/arch/alpha/include/asm/atomic.h ...

Mivel mi a /usr/src/linux-2.6.31 könyvtában vagyunk, ezért a hivatkozás elejéről a linux-2.6.31.9 könyvtárat el kell távolítani. Ezért kell a -p1, vagyis egy könyvtárat kell törölnünk a fájl hivatkozásból. Az előző grsecurity patch-et alkalmazhattuk volna a következőképpen is:

• cd /usr/src
• ln -s linux-2.6.31 linux-2.6.31.9
• patch -p0 < grsecurity-2.1.14-2.6.31.9-200912191011.patch

Ebben az esetben semmilyen fájlhivatkozást nem kell átalakítani. De fontos létrehozni a linux-2.6.31.9 könyvtárat (szimbolikus link is elég), mivel a patch ezen könyvtáron belüli fájlokat akar majd módosítani.

6.2. A hardver eszközök és szoftver szükségletek vizsgálata

Miután a forráskód elő lett készítve fontos dolog, hogy tisztában legyünk a rendszerünk feladatával és a hardver eszközök paramétereivel. Tehát figyelembe kell vennünk a következőket:

• **hardver paraméterek**: tudnunk kell, hogy a rendelkezésre álló hardver milyen képességekkel rendelkezik és ehhez milyen eszközmeghajtók szükségesek
• figyelembe kell venni a **telepítési szituációt**: attól függően, hogy milyen fájlrendszeret, illetve milyen egyéb diszk kezelési módszereket használunk (RAID, LVM, ...) különböző fájlrendszer támogatások szükségesek
• a használni kívánt protokollok, eljárások támogatását is előre végig kell gondolni
• a gép védelme érdekében a kernel szintű tűzfal használni kívánt szűrési lehetőségei
• szeretnénk-e initramfs/initrd-t használni a rendszerindulás során

Amikor az operációs rendszert telepítettük, akkor a disztribúció készítői egy általános kernet adtak. Amely a legtöbb szituációban működik. A saját kernel esetében nekünk csak egy szituációt kell figyelembe vennünk, hogy a mi esetünkben el tudja látni a megfelelő funkciókat.

A továbbiakban a számunkra az ingyen elérhető VMware Server által emulált virtuális gép paraméterei fogom bemutatni. Vagyis számunkra a továbbiakban ez meghatározza, hogy az egyes driverek közül mire is lesz szükségünk. A kernel konfiguráció során, amelyről a következő alfejezet szól van arra lehetőségünk, hogy az összes lehetőség közül kiválasszuk a számunkra fontosakat.

6.2.1. A VMware virtuális gép hardver paraméterei

Amennyiben rendelkezünk egy működő operációs rendszerrel, úgy a hardver eszközök feltérképezésre esetében segítségül híven kérjük az Lspci parancsot. Amennyiben a parancs esetében léteznek ismeretlen eszközök, akkor ajánlott a
helyi adatbázis frissítése. Az lspci parancs ugyanis kiolvassa az egyes eszközök PCI azonosítóját, és ezek alapján egy saját adatbázisból megpróbál hozzájuk egy eszközt rendelni. Az update-pciids paranccsal frissíthetjük a szóban forgó adatbázist.

Példa lspci parancs kimenetére:

00:00.0 Host bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX Host bridge (rev 01)
00:01.0 PCI bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX AGP bridge (rev 01)
00:07.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 08)
00:07.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:07.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:0f.0 VGA compatible controller: VMware Inc [VMware SVGA II] PCI Display Adapter
00:10.0 SCSI storage controller: LSI Logic / Symbios Logic 53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev 01)
00:11.0 Ethernet controller: Advanced Micro Devices [AMD] 79c970 [PCnet32 LANCE] (rev 10)

A VMware virtuális gép fontosabb hardverei: 6. sz. táblázat

<table>
<thead>
<tr>
<th>Hardver</th>
<th>Típus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>a hoszt gép processzora</td>
</tr>
<tr>
<td>Memória</td>
<td>a virtuális gép paraméterei esetében beállított</td>
</tr>
<tr>
<td>Alaplapi chipset</td>
<td>Intel PIIX4</td>
</tr>
<tr>
<td>Videókártya</td>
<td>VMware SVGA II PCI</td>
</tr>
<tr>
<td>Diszk vezérlő</td>
<td>SCSI: Isilogic vagy buslogic típusú IDE: alaplapi PIIX4 típusú vezérlő</td>
</tr>
<tr>
<td>Diszk</td>
<td>a létrehozáskor beállított típusú és méretű</td>
</tr>
<tr>
<td>CDROM</td>
<td>IDE vagy SCSI típusú (csak IDE-ről tud bootolni), ISO image használható CD-ként</td>
</tr>
<tr>
<td>Egér</td>
<td>PS/2-es</td>
</tr>
<tr>
<td>Soros, Párhuzamos, USB portok</td>
<td>a hoszt gép megfelelő portjai</td>
</tr>
<tr>
<td>Floppy</td>
<td>a hoszt gép floppy eszköze, vagy image fájl</td>
</tr>
</tbody>
</table>

Az előzőekben felsorolt eszközök közül a kernel működése szempontjából a legkritikusabbak: a CPU utasításkészlet, a diszk vezérlő és diszk típusok támogatása

A géptermi laboryakorlatok esetében használt virtuális gépek jellemzői, és a működésűkhöz szükséges drivereket mutatja be a következő táblázat. Csak a virtuális gép azon komponenseit tartalmazza, amelyekre vonatkozó információk feltétlenül szükségesek a kernel konfigurálásához:
A VMware virtuális gép működéshez szükséges kernel driverek: 7. sz. táblázat

<table>
<thead>
<tr>
<th>Hardver</th>
<th>Kernel driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentium 4 CPU HT támogatással</td>
<td>Processor family (Pentium-4/Celeron(P4-based)/Pentium-4 M/older Xeon)</td>
</tr>
<tr>
<td>512MB Memória</td>
<td>alapértelmezésként támogatott</td>
</tr>
<tr>
<td>Intel PIIX4</td>
<td>Intel PIIX/ICH chipsets support</td>
</tr>
<tr>
<td>VMware SVGA II</td>
<td>VGA text console karakteres módban (X alatt saját driver vmware típusú csatolóhoz)</td>
</tr>
<tr>
<td>SCSI: Isilologic diszk vezérlő</td>
<td>Fusion MPT ScsiHost drivers for SPI</td>
</tr>
<tr>
<td>SCSI: buslogic diszk vezérlő</td>
<td>BusLogic SCSI support</td>
</tr>
<tr>
<td>IDE alaplap PIIX4 típusú vezérlő</td>
<td>Intel PIIX/ICH chipsets support</td>
</tr>
<tr>
<td>SCSI diszk</td>
<td>SCSI disk support</td>
</tr>
<tr>
<td>IDE diszk</td>
<td>ATA/ATAPI/MFM/RLL support + generic</td>
</tr>
<tr>
<td>SCSI CDROM</td>
<td>ATA/ATAPI disk support + Include IDE/ATAPI CDROM support</td>
</tr>
<tr>
<td>IDE CDROM</td>
<td>ATA/ATAPI/MFM/RLL support + Include IDE/ATAPI CDROM support</td>
</tr>
<tr>
<td>Floppy</td>
<td>Normal floppy disk support</td>
</tr>
</tbody>
</table>

A kernel konfigurálása című alfejezetből kiderül, hogy az előző táblázatban felsorolt támogatások pontosan mely menüpontok alatt lesznek elérhetőek. A következő fejezetben bemutatom a kernel fontosabb opcióit. Ebben az esetben egy olyan VMware virtuális gépet veszek alapul, amely Isilologic típusú SCSI diszk vezérlőt és SCSI diszket használ, csak ext3 fájlrendszerrel, és nem kell a rendszerinduláshoz initramfs/initrd image.

6.3. A Kernel konfigurálása

6.3.1. A konfigurálás lehetőségei és a használt jelölési módok

A kernelfordítás egy szöveges konfigurációs fájl alapján történik. Ebben a fájlban meghatározott nevek segítségével lehetséges adott támogatásokat ki-be kapcsolni.

Minta a konfigurációs fájl soraira:

```bash
CONFIG_NET=y
CONFIG_PACKET=m
# CONFIG_IP_ADVANCED_ROUTER is not set
```

A konfigurációs fájl könnyebb elkészítésére találták ki a következő lehetőségeket:

```bash
make config # sor orientált módon
make menuconfig # ncurses alapú felület
make xconfig  # Qt alapú felület
```
make gconfig

Az utolsó kettő futtatásához tehát X grafikus felület feltétlenül szükséges. A parancsokat a kernel forrást tartalmazó könyvtárban kell kiadni.

A „make menuconfig” főmenüje 2. sz. ábra

A „make menuconfig” jelölései:

- A [] két választási lehetőséget jelöl
 - [*] a támogatást be kell építeni a kernel image-be
 - [] adott támogatás nem szükséges
- A < > három választási lehetőséget jelöl
 - <*> a támogatást be kell építeni a kernel image-be
 - <M> a támogatás külső modulként legyen
 - < > adott támogatás nem szükséges
- A { } azt jelzi, hogy függőség miatt kiválasztva, de választhatunk két lehetőség közül
 - {*} a támogatást be kell építeni a kernel image-be
 - {M} a támogatás külső modulként legyen
- A –*– jelzi, hogy a támogatás függőség miatt automatikusan kiválasztva és nincsen más választási lehetőségünk
- A normál zárójel esetében valamilyen sztringet vagy számot adhatunk meg.

A „make menuconfig” fontosabb billentyűparancsai:
- kurzur mozgató billentyűkkel navigáció
- ENTER adott almenüpont kiválasztása
A továbbiakban a „make menuconfig” főmenüje alapján fogom a kernel egyes funkcióit értelmezni. A kernelnek nagyon sok lehetősége van, amely ismertetése meghaladja ezen mű terjedelmi lehetőségeit. Azokra az opciókra fogok koncentrálni, amelyek az alap működéshez kellenek. Ezen felül igyekszem utalásokat tenni, amellyel segítem az eligazodást.

General setup ---> (általános beállítások)

- Prompt for development and/or incomplete code/drivers
 - Mutassa az egyes kódok „stabilitási állapotát”:
 - NEW új
 - DEPRECATED elavult
 - EXPERIMENTAL kísérleti jellegű
 - (-noinitrd) Local version - append to kernel release
- Automatically append version information to the version string

Saját verzió hozzáfűzése a verzió sztringhez
- Support for paging of anonymous memory (swap)

Virtuális memória (swap) támogatása
- System V IPC
- SVR rendszerek köré örökölt folyamatok közti adatcserére
- POSIX típusú üzenet sor, az IPC egy speciális formája
- BSD Process Accounting

Folyamatokról szóló információk tárolása
- Auditing support
 - A kernel működésének vizsgálata, ellenőrzése
 - < > Kernel .config support

Saját konfiguráció tárolása
 - (15) Kernel log buffer size (16 => 64KB, 17 => 128KB)
 - * Kernel napló puffer mérete
 - * Group CPU scheduler

Folyamatok csoportosítása, csoportként való CPU alokáció
- Kernel->user space relay support (formerly relayfs)

Nagy mennyiségű adat mozgatása kernel és felhasználói tér között
- Initial RAM filesystem and RAM disk (initramfs/initrd) support

Kezdeti ramdiszk támogatás, a kernel a valódi root fajlrendszer beállítása előtt ezt használja mint kezdeti root fajlrendszer. Innét kernel modulok töltethetők be illetve alkalmazások indíthatók el igény szerint.
- Optimize for size

A kernel méretre való optimalizálása
- Configure standard kernel features (for small systems) --->

Beágyazott rendszerekben használható kernel készít. Jó néhány választási opciót eleve letilt.

Choose SLAB allocator (SLAB) --->
Gyakran használt fájl objektumok cache-elésének módszere

[*] **Enable loadable module support** ---› (betölthető modul támogatás)
[*] Forced module loading
Kernel modul betöltésének „kierőszakolása”
[*] Module unloading
[*] Forced module unloading
Kernelmodulok eltávolítása normál illetve „kierőszakolt” módon.
[*] Module versioning support
Modulok verziószámozásának támogatása
[] Source checksum for all modules
A forrásra utaló ellenőrző összeg használata.

[-*- Enable the block layer ---› (blokkos eszközök támogatása)
[] Support for Large (2TB+) block devices and files
Nagy méretű blokkos eszközök és fájlok támogatása >= 2TB (max. 16TB 32bites rendszerben)
 IO Schedulers --->
 ** Anticipatory I/O scheduler
 ** Deadline I/O scheduler
 ** CFQ I/O scheduler
Default I/O scheduler (CFQ) --->
Az I/O műveletek esetében használatos ütemező (elevator) támogatása.

Processor type and features ---› (processzor típusok és jellemzőik)

[] Tickless System (Dynamic Ticks)
Az időzítő nem folyamatosan jár, hanem csak igény szerint.
[] High Resolution Timer Support
Nagy pontosságú időzítő támogatás.
[*] Symmetric multi-processing support
Több processzoros (SMP) rendszerek támogatása
[] Paravirtualized guest support --->
Paravirtualizált támogatás (pl.: Xen)
 Processor family (Pentium-4/Celeron(P4-based)/Pentium-4 M/older Xeon)
Processzor család kiválasztása. Itt választhatunk 386-tól felfelé, a CPU-nk típusa szerint. A mintában szereplő Pentium-4 család mellett elérhető az Opteron/Athlon64/Hammer/K8 és a Core 2/newer Xeon támogatása is.
[] Generic x86 support
Általános x86 optimalizálás az utasításkészlet mellett.
[] HPET Timer Support
Nagy pontosságú időzítő támogatása
(2) Maximum number of CPUs (2-255)
A processzorok maximális száma
[*] SMT (Hyperthreading) scheduler support
A Hyperthreading-et figyelembe vevő CPU ütemező.
[] Multi-core scheduler support
Több magot figyelembe vevő CPU ütemező.
Preemption Model (No Forced Preemption (Server))
A kernel szálak preemptívek legyenek-e. Egy szerver esetében nem kell, mivel nem kell gyorsan „felhasználói eseményekre” reagálni.

[] Machine Check Exception
A CPU jelzi a kernelnek például ha valamilyen melegedési hiba van.
< > /dev/cpu/microcode - Intel IA32 CPU microcode support
CPU microcode frissítésének lehetősége.
< > /dev/cpu/*/msr - Model-specific register support
Modellfüggő regiszterek támogatása speciális eszközökön keresztül.
< > /dev/cpu/*/cpuid - CPU information support
CPU típusának azonosítása
High Memory Support (4GB) --->
„Felső memória” támogatása. Ezáltal nemcsak az 1G alatti rész, hanem maximum 4 vagy 64GB memória is elérhető lesz.
Memory model (Flat Memory) --->
Memória belső kezelésének modellje
[*] MTRR (Memory Type Range Register) support
A processzor memóriahozzáféréseinek vezérlésére. Grafikus környezet esetében ajánlott használni, mert jelentős sebesség növekedést is eredményezhet.
Timer frequency (250 HZ) --->
Az időzítő frekvenciája.

Power management options --->(teljesítmény menedzsment)
[*] Power Management support
A teljesítmény menedzsment támogatása
[*] Suspend to RAM and standby
A gép „elaltatása” (ACPI S3 állapot)
[] Hibernation (aka 'suspend to disk'
A gép állapotának mentése (hibernálása) adott partícióra
[*] ACPI (Advanced Configuration and Power Interface) Support --->
Az ACPI funkciók támogatása (CPU hőmérséklet, elemek állapota, AC adapter érzékelése, bekapcsoló gomb használata, ...< > APM (Advanced Power Management) BIOS support --->
Az APM BIOS támogatása. Az újabb gépek tudják az ACPI-t.
CPU Frequency scaling --->
CPU sebességének változtatása „meghatározott szabály” alapján.

Bus options (PCI etc.) ---> (sín rendszerek támogatása)
[*] PCI support
PCI busz támogatása
[] PCI Express support
PCI Express busz támogatása
[] ISA support
AT busz támogatása
< > PCCard (PCMCIA/CardBus) support
PCMCIA/CardBus támogatása
Executable file formats / Emulations ---› (végrehajtható formátumok)

[*] Kernel support for ELF binaries
Az ELF típusú binárisok támogatása. Feltétlenül kell ahhoz, hogy a kernel
alkalmazást tudjon indítani.

< > Kernel support for a.out and ECOFF binaries
Régebbi bináris formátumok támogatása.

< > Kernel support for MISC binaries
Egyéb binárisok (Java, .NET, ...) futtatási lehetősége.

Networking support ---› (hálózati beállítások)

Networking options ---›

Hálózati opciók

< M> Packet socket
A hálózati eszköz és kernel közvetlen kommunikációjához kell.

[*] Packet socket: mmapped I/O
A gyorsabb kommunikáció érdekében memory mapped I/O.

< M> Unix domain sockets
Standard módszer a hálózat elérésére Unix operációs rendszerben, az IPC egy
speciális formája.

[*] TCP/IP networking
TCP/IP alapú hálózati kommunikáció

[] IP: multicasting
IP alapú csoportos küldés támogatása

[] IP: advanced router
IP alapú útválasztó funkciók

[] IP: kernel level autoconfiguration
Lehetővé teszi a kernel indulásakor az IP paraméterek beállítását. Lemez nélküli
munkaállomások esetében kiválóan használható.

< > IP: tunneling
IP alapú alagút típusu átvitel

[*] IP: TCP syncookie support (disabled per default)
A SYN elárasztástól véd, ami a DoS típusú támadások egyik fajtája.

< M> INET: socket monitoring interface
Hálózati forgalomb megfigyelésére való programok használják.

[] TCP: advanced congestion control ---›
TCP torlódás vezérlő algoritmusok

< > The IPv6 protocol
IP version 6 protokoll

[] Network packet filtering framework (Netfilter) ---›
Hálózati csomagszűrő tűzfal beállításai.

< > 802.1d Ethernet Bridging
Ethernet hálózati híd

< > 802.1Q VLAN Support

Virtuális LAN-ok támogatása

[] QoS and/or fair queueing ---›
Quality of Service, hálózati csomagok küldési sorrendjének szabályozása
Amateur Radio support

AX.25 rádiós protokoll támogatása
< > IrDA (infrared) subsystem support

Infrared kommunikáció támogatása
< > Bluetooth subsystem support

Bluetooth kommunikáció támogatása

Wireless

Wifi hálózati stack
< > RF switch subsystem support

Wifi és Bluetooth kártyákon található rádiófrekvenciás kapcsolók támogatása.

Device Drivers

Device Drivers (eszközmeghajtó programok)

Generic Driver Options

általános driver opciók, firmware használatának lehetősége
< > Memory Technology Device (MTD) support

Flash és egyéb speciális memóriák támogatása. Ezekkel főként beágyazott rendszerekben találkozhatunk.
< > Parallel port support

Párhuzamos port támogatása

Plug and Play support

Plug és Play eszközök támogatása

[] Block devices

blokkos eszközök támogatása
< > Normal floppy disk support

Floppy támogatása
< > Loopback device support

„Visszahurkoló eszköz” támogatása. Segítségével egy fájlt ugyanúgy lehet használni, mint egy partíciót. pl.: CD iso image csatlakoztatásakor használatos.
< > Network block device support

Hálózaton keresztüli erőforrások elérése blokkos eszközként
< > RAM disk support

A memória egy részét úgy használhatjuk a segítségével, mint egy diszket. Abban az esetben, hogyha a kernel initrd-t (nem initramfs-t) használ, akkor feltétlenül szükséges.

[] Misc devices

Egyéb eszközök támogatása, amely egyik kategóriába sem sorolható.

< M> ATA/ATAPI/MFM/RLL support

Általános IDE/ATA támogatás
< M> Generic ATA/ATAPI disk support

Általános ATA/ATAPI diszk támogatás
< > ATA disk support

újabb ATA módok támogatása
< M> Include IDE/ATAPI CDROM support

IDE CDROM támogatása
< M> Intel PIIX/ICH chipsets support

Az Intel PIIX és ICH alaplapchi chipset támogatása
SCSI device support --->
Általános SCSI támogatás
<<> SCSI device support
SCSI eszközök támogatása
<<> SCSI disk support
SCSI lemez támogatása
< > SCSI CDROM support
SCSI CDROM támogatása
SCSI Transports --->
SCSI eszközök átviteli jellemzőinek megtekintése
--* Paralell SCSI (SPI) Transport Attributes
Párhuzamos SCSI transzport támogatása
[*] SCSI low-level drivers --->
Alacsony szintű SCSI eszközök
<<> BusLogic SCSI support
BusLogic típusú SCSI vezérlő támogatása (a VMware ilyet is tud emulálni)
< > Serial ATA (prod) and Parallel ATA (experimental) drivers
ATA protokollt használó hoszt adapterek elérése. pl. SATA lemezek esetében. A SCSI diszk illetve a SCSI CDROM támogatás szükséges a használathoz.

[*] Multiple devices driver support (RAID and LVM) --->
RAID és LVM használata
<M> RAID support
RAID szintek támogatása
<M> RAID-0 (striping) mode
<M> RAID-1 (mirroring) mode
A megfelelő RAID szintek támogatása
<M> Device mapper support
LVM támogatása

[*] Fusion MPT device support --->
Fusion Message Passing Technology eszközök támogatása
<<> Fusion MPT ScsiHost drivers for SPI
A VMware által emulált lsilogic típusú vezérlő támogatása

IEEE 1394 (FireWire) support --->
Firewire csatoló támogatása (pl. külső diszk vagy digitális videókamera)
< > I2O device support --->

[*] Network device support --->
Hálózati eszközök támogatása
< > Bonding driver support
Több eszköz összekapcsolása (trönk)
< > Universal TUN/TAP device driver support
Csomagküldés felhasználói programoknak. Lehetővé teszi a hálózati csomagok továbbítását pl.: egy virtuális gép felé.
[*] Ethernet (10 or 100 Mbit) --->
10 vagy 100 Mbit Ethernet kártyák támogatása
[*] EISA, VLB, PCI and on board controllers
EISA, VLB, PCI és alaplapi kártyák támogatása
<M> AMD PCnet32 PCI support
AMD PCnet32 alapú ethernet kártyák támogatása (a VMware ilyet emulál)
[*] Ethernet (1000 Mbit) --->
[*] Ethernet (10000 Mbit) --->
Gigabites, 10 Gigabites ethernet kártyák támogatása
Wireless LAN --->
Wifi eszközök támogatása
<M> PPP (point-to-point protocol) support
Pont-pont kapcsolat támogatása

< > ISDN support --->
ISDN eszközök támogatása

< > Telephony support --->
Telefon kártya támogatás. Lehetővé teszi VoIP alkalmazások használatát.

Input device support --->
Bemeneti eszközök támogatása
-[*] Generic input layer (needed for keyboard, mouse, ...)
Általános billentyűzet, egér támogatás
-[*] Mouse interface
/dev/input/mice eszközfájl használata
-[*] Keyboards --->
Billentyűzetek
[*] Mice --->
<M> PS/2 mouse
PS/2-es egér támogatása

Character devices --->
karakteres eszközök támogatása
-[*] Virtual terminal
Virtuális terminál támogatás
 Serial drivers --->
Soros port használata
-[*] Unix98 PTY support
Unix98 pszeudo terminál támogatás
< > Enhanced Real Time Clock Support

Valós idejű óra
< > I2C support --->
I2C busz támogatása
[M] SPI support --->
Serial Peripheral Interface protokoll támogatása
-[*] Power supply class support --->
Az elemek illetve a tápfeszültség monitorozása
Hardware Monitoring support
Hardver eszközök feszültségének, hőmérsékletének, ventilátorok forgási sebességének monitorozása

Watchdog Timer Support
A gép működésének figyelése, hiba esetén az újraindítása

Multimedia devices
Multimédiás eszközök támogatása (pl. TV tuner kártya, rádiós kártya)

Graphics support
Grafikai támogatások
/dev/agpgart (AGP Support)
AGP port támogatása
Support for frame buffer devices
Frame buffer console támogatása
Console display driver support
VGA console támogatása
Sound
Hangkártyák támogatása
HID Devices
Human Interface Device támogatása

USB support
Általános USB támogatás
Support for Host-side USB
EHCI HCD (USB 2.0) support
USB 2.0 támogatása
USB Printer support
USB Mass Storage support
USB csatlakozós nyomtató támogatása
USB-s tárolóeszközök támogatása
MMC/SD card support
Kártyaolvasók támogatása
InfiniBand support
Infiniband protokoll támogatása (tároló eszközök)

Firmware Drivers
(firmware eszközmeghajtók)

File systems
(fájllrendszerek támogatása)

Second extended fs support
EXT2 fájllrendszerek támogatása
Ext3 journaling file system support
EXT3 naplózó fájllrendszerek támogatása
The Extended 4 ext4 filesystem
EXT4 naplózó fájllrendszerek támogatás
< > Reiserfs support
< > JFS filesystem support
< > XFS filesystem support
Reiserfs (3.6), JFS, XFS fájlrendszer két támogatása
< > GFS2 file system support
< > OCFS2 file system support
Global FS klaszter fájlrendszer és Oracle klaszter fájlrendszer 2-es verziójának támogatása
[*] Inotify file change notification support
[*] Inotify support for userspace
Fájl változások jelzésére használható
< > Kernel automounter support
Távoli fájlrendszer automatikus csatlakoztatása
< > FUSE (Filesystem in Userspace) support
FUSE támogatás (felhasználói térben fájlrendszer implementálását teszi lehetővé)
CD-ROM/DVD Filesystems --->
CD/DVD fájlrendszer
<*> ISO 9660 CDROM file system support
[*] Microsoft Joliet CDROM extensions
ISO9660 fájlrendszer Joliet kiterjesztéssel
< > UDF file system support
UDF fájlrendszer támogatása
DOS/FAT/NT Filesystems --->
DOS, FAT, NTFS fájlrendszer támogatása
Pseudo filesystems --->
pszeudo fájlrendszer
-*/- /proc file system support
/proc fájlrendszer támogatása
[*] Virtual memory file system support (former shm fs)
tmpfs fájlrendszer támogatása (mindent a virtuális memóriában tárol)
Miscellaneous filesystems --->
Egyéb fájlrendszer (Apple HFS, OS/2 HPFS, UFS, ...)
< > Compressed ROM file system support (cramfs)
Initrd esetében (nem initramfs) szükség van a cramfs támogatásra, ugyanis az initrd image ezt a fájlrendszer használja.
[] Network File Systems --->
Hálózati fájlrendszer támogatása
< > NFS file system support
< > NFS server support
Network FS eléréséhez illetve saját kötetek megosztásához
< > SMB file system support (OBSOLETE, please use CIFS)
< > CIFS support (advanced network filesystem SMBFS successor)
Windows alatti megosztások, vagy Samba megosztásokhoz való hozzáférés
NCP file system support (to mount NetWare volumes)

Novell Netware kötetek elérése

Coda file system support (advanced network fs)

Coda kliensként való működés

Partition Types ---> Partíció típusok választása

PC BIOS (MSDOS partition tables) support

Hagyományos MSDOS típusú partíciós tábla elérése

[] Windows Logical Disk Manager (Dynamic Disk) support

Az „ablakozós” operációs rendszerek Logical Disk Manager programjával létrehozott partíciók kezelése

{/*} Native language support ---> Karakter készletek, kódlapok támogatása (UTF-8, Latin-1, Latin-2, Windows-1250, Codepage 852, ...)

Kernel hacking --->

kernel „hackelése”

[*] Magic SysRq key

Alt+PrintScreen és egyéb billentyűk megnyomása segítségével egy kernel hiba után ki lehet üríteni a buffer cache-t és a rendszert újra lehet indítani.

Security options --->

Biztonsági beállítások

[] Cryptographic API --->

Titkosítási algoritmusok megvalósításai főként az IPSec számára

[] Virtualization --->

KVM (Kernel-based Virtual Machine) támogatások

Library routines --->

Általános célú könyvtári rutinok

{M} CRC32 functions

CRC ellenőrzése eszközök és hálózati szolgáltatások esetében

6.4. A konfigurálás néhány fontos beállítása

Amikor kernelt konfigurálunk van néhány fontos beállítás, amely függvénye a telepítési szituációknak. A VMware virtuális gép esetében a következő táblázat foglalja össze ezeket a beállításokat. A táblázatban a – jelenti, hogy nincsen szükség az adott támogatásra, az M jelölő, hogy modulként, a * pedig, hogy be kell építeni a kernelbe az adott támogatást. A táblázat a minimális támogatásokat tartalmazza, ahol a -, M, * felel meg a növekvő sorrendnek.
Az egyes támogatások minimális szükséglete 8. sz. táblázat

<table>
<thead>
<tr>
<th>Eszköz</th>
<th>Kernel támogatás(ok)</th>
<th>initrd</th>
<th>noinitrd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI támogatás</td>
<td>SCSI device support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>LSI Logic SCSI vez.</td>
<td>Fusion MPT device support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Fusion MPT ScsiHost drivers for SPI</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>BusLogic SCSI vez.</td>
<td>BusLogic SCSI support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>SCSI diszk</td>
<td>SCSI disk support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>IDE támogatás</td>
<td>ATA/ATAPI/MFM/RLL support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>IDE vezérlő (PIIX4)</td>
<td>Intel PIIX/ICH chipsets support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>IDE diszk</td>
<td>ATA/ATAPI/MFM/RLL support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Generic ATA/ATAPI disk support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>ATA disk support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td>RAID 0,1,5,10</td>
<td>RAID support</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>megfelelő RAID szint támogatása</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>pl.: RAID-1 (mirroring) mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVM</td>
<td>Device mapper support</td>
<td>M</td>
<td>!</td>
</tr>
<tr>
<td>Initramfs/Initrd</td>
<td>Initial RAM filesystem and RAM disk</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(initramfs/initrd) support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAM disk support (csak initrd)</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>/ fájlrendszer</td>
<td>a megfelelő fájlrendszer (ext2, ext3,</td>
<td>M</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>reiserfs, xfs, jfs) támogatása</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pl.: Ext3 journalling file system support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>további fájlrendszerek</td>
<td>a megfelelő helyi vagy távoli</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>fájlrendszer támogatása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRAMFS (csak initrd)</td>
<td>Compressed ROM file system support (cramfs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A táblázat utolsó két oszlopa tartalmazza azt, hogy mi a különbség abban az esetben, hogy initrd image-t szeretnénk használni, illetve hogyha nem akarunk használni. A felkiáltójel jelzi, hogy initrd nélkül az LVM használata nem támogatott. A logikai kötetkezeléshez ugyanis feltétlenül szükség van a megfelelő userspace-beli programokra. Ezek nélkül a kernel nem képes a megfelelő / fájlrendszert megtalálni.

6.5. Fordítás előzetes konfiguráció alapján

Amennyiben végignéztük a konfigurálás lehetőségeit és beállítottuk a számunkra szükséges opciókat úgy ezeket a beállításokat el kell mentenünk. Amikor az „exit” menüpontot választjuk, akkor rákérdez a mentésre:

Do you wish to save your new kernel configuration?
Ebben az esetben válaszoljunk igennel, mivel a korábbi kijelöléseink csak ebben az esetben lesznek mentve. Alapértelmezésként a .config nevű fájlba kerül a mentés a kernel forrás gyökérkönyvtárába (/usr/src/linux). Amennyiben szeretnénk egy adott konfigurációt menteni és a későbbiekben felhasználni, akkor ezt a fájlt másoljuk át egy külön könyvtárba.

A mentést és a konfiguráció visszatöltését menüpontok segítségével is el tudjuk végezni:

- Load an Alternate Configuration File
- Save an Alternate Configuration File

Amennyiben verzió váltás van előfordulhatnak problémák abban az esetben, hogyha egy régebbi konfigurációs fájl töltöttünk vissza. Ennek oka lehet az, hogy például megváltoztatuk egy korábbi verzióhoz képest a konfigurációs bejegyzések nevei. Éppen ezért visszatöltés után ajánlott egyszer végigszaladni az összes menüponton, hogy áttekintsük az újabb lehetőségeket és a szükségesek beállítását ellenőrizzük.

Ezután kiadhatjuk a fordítás parancsait.

Hagyományos módon (működik a 2.6-nál korábbi kernelek esetében is):

- make dep függőségek vizsgálata
- make clean törlés
- make bzImage (vagy make zImage) kernel image bzip2-vel vagy gzip-pel tömörítve
- make modules kernel modulok fordítása
- make modules_install kernel modulok telepítése

Egyszerűsített módon:

- make clean törlés
- make kernel image (bzip2-vel tömörítve) és modulok
- make modules_install modulok telepítése

A make clean parancs végrehajtása csak abban az esetben szükséges, hogyha már volt egy korábbi fordítás. Ez törli a kernel image-t illetve az egyes object fájlokat. A make help parancssal tájékozódhatunk a make egyéb lehetőségeiről. A fordítás parancsai architektúránként különbözőhethetnek. Manapság ajánlott több szálon indíteni a fordítást, ezzel jelentősen csökkenthető a fordítási idő. (pl.: make -j 4)

Amennyiben a parancsok sikeresen végrehajtódnak elkészül a kernel image, illetve az egyes kernel modulok. Előfordulhat, hogy bizonyos driverek kiválasztása fordítási problémát okoz (pl.: 2.6.22.9 RxRPC session socket), de ez nem jellemző.

A fordítás eredményeként létrejön:
- arch/i386/boot/bzImage kernel image (x86 architektúra esetében)
• System.map(kernel szimbólum tábla)
• /lib/modules/"version" a telepített kernelmodulok a verziónak
megfelelő könyvtárban (pl.: "version" = 2.6.31.9-kami)

Ezután következhet az elkészült fájlok másolása a /boot könyvtárba:
• cp arch/i386/boot/bzImage /boot/vmlinuz-2.6.31.9-kami
• cp System.map /boot/System.map-2.6.31.9-kami

Abban az esetben, hogyha a kernel initramfs/initrd image-t is használ a
rendszerinduláshoz, akkor azt létre kell hozni a rendelkezésre álló modulok
felhasználásával. Például:
• mkninitramfs -o /boot/initrd.img-2.6.31.9 2.6.31.9-kami

A parancs esetében a -o kapcsoló után adjuk meg a kimeneti fájl nevét, a
ekövetkező paraméter pedig a kernel verzió. Ez is nagyon fontos, hiszen a kernel
csak a megfelelő verziójú modulok segítségével működhet megfelelően.

Ezután következhet a rendszerbetöltő konfigurálása. A GRUB esetében például a
következő módon állíthatjuk be a szükséges paramétereket:

```
title           Debian GNU/Linux, kernel 2.6.31.9
root            (hd0,0)
kernal          /vmlinuz-2.6.31.9-kami root=/dev/sda1 ro
savedefault
```

A legegyszerűbb, hogyha az alapértelmezett kernelhez tartozó részt lemosoljuk.
Majd ezt követően módosítsuk az image fájlok neveit és a menüpont nevét.
Célszerű az új kernelhez tartozó menüpontot az első helyre tenni, hiszen ebben
az esetben ő lesz az alapértelmezett és a következő rendszerinduláskor a GRUB
azt próbálja majd meg automatikusan indítani. Ajánlott meghagyni a korábbi
verzió(k)a)t, hiszen előfordulhat, hogy valamilyen konfigurációs hiba miatt az új
kernelünk nem lesz működőképes. Ebben az esetben a korábbi kernel
segítségével még tudunk rendszert indítni és a konfigurálást és fordítást újra
megpróbálni.

Amennyiben a kernel indulásához szeretnénk initrd-t is használni, úgy azt létre
kell hozni, majd elhelyezni a rá mutató hivatkozást a /boot/grub/menu.lst-ben.
Például a kernel-el kezdődő sor után berakhatjuk a következő sort:

```
initrd       /initrd.img-2.6.31.9
```

Ezután a paraméterként átadott fájl lesz a kezdeti root fájlrendszer, amely
betöltődik a ramdiszkbe és onnét a kernel drivereket tud betölteni és
programokat tud elindítani.

A Debian 5.0 támogatja a GRUB 2-t is, ennek használataval egyelőre nem fogunk
foglalkozni.
6.6. Kernel fordítás „Debian módra”

Debian GNU/Linux operációs rendszerben a kernel-package nevű csomag a
kernelfordítása elősegítésére készült. Ebben a csomagban található a make-kpkg
parancs, amely segítségével kernelt lehet fordítani, és az elkészült kernelből .deb
csomagot készíteni. Használatának a legfontosabb előnyei:

- a kernelfordítás kimenete .deb formában jelenik meg (kernel-image-
 ${version}_${revision}_${arch}.deb), amelyet a későbbiek
 csomagkezelővel tudunk telepíteni, akár másik gépre is
- a kernellel együtt lehet ún. külső modulokat is fordítani (pl.: aufs,
 nvidia, ...), amelyekből szintén csomagok készülnek (a module-assistant
 (m-a) csomagot (parancsot) felhasználva)
- nem kell szerkeszteni a GRUB beállításait, a megfelelő sorok a kernel-
 image csomag telepítéskor automatikusan létrejönnek
- a dpatch segítségével saját foltok használhatók fel

Ilyenkor az alábbiak szerint végezhetjük el a kernel fordítását:
- kernel forrás letöltés, ellenőrzés, kicsomagolás a korábbiak szerint
- a /usr/src/modules könyvtában kicsomagolni azokat a modulokat,
 amelyeket szeretnénk a kernellel együtt fordítani. Ezek rendre a -source
 -ra végződő csomagokban vannak (pl. aufs-source, nvidia-kernel-
 source, ...)
- a kernel konfigurálása a korábbiak szerint
- a kernel fordítása: make-kpkg --initrd kernel_image
- a külső modulok fordítása (opcionális): make-kpkg modules_image
- header fájlok csomagolása(opcionális): make-kpkg kernel_headers

Egy egyszerű szkripttel tetszőleges verziószámot adhatunk hozzá a
ksamagokhoz, illetve beállíthatjuk azt is, hogy párhuzamosan hány szálon
történjen a fordítás.

```
#!/bin/bash
export CONCURRENCY_LEVEL=4
V=-kami
R=1
make-kpkg --append-to-version $V --revision $R --initrd kernel_image
make-kpkg --append-to-version $V --revision $R modules_image
make-kpkg --append-to-version $V --revision $R kernel_headers
```

Egy sikeres fordítás eredményeként létrejönnek az alábbi fájlok: linux-
image-2.6.31.9-kami_i386.deb, linux-headers-2.6.31.9-kami_i386.deb. Ezt
követően a csomagokat a dpkg paranccsal telepíthetjük, és ellenőrizhetjük a
kernelünk működését.

A module-assistant csomaggal „utólagosan” is lehet egy kernelhez modulokat
fordítani. (Feltéve, hogy ugyanaz a C fordítónk van, és rendelkezésre állnak a
kernel header fájlok.) Egy példa a használatára:

```
m-a -k /usr/src/linux-2.6.31 -l 2.6.31.9-kami build nvidia
```

A példában az nvidia driverből készítünk kernel modult. A -k opcióval a kernel
header fájlok helyét, a -l opcióval pedig a kernel verziót adjuk meg.
7. Felhasználó adminisztráció és a PAM

7.1. A felhasználó adminisztráció parancsai

Amikor egy rendszer telepítünk, akkor a rendszergazda (root) felhasználó jelszavát meg kell adnunk. A jelszó megadásánál figyeljünk kell arra, hogy az minél nehezebben legyen kitalálható az ún. jelszó feltörő alkalmazások segítségével. Így ajánlott kis és nagybetűket is használni, emellett számokat és speciális karaktereket is. Célszerű a billentyűzet kiosztások adta különbségekre is odafigyelni.

A Debian GNU/Linux használ ezen kívül jó néhány beépített csoportot és felhasználót is. Ezeknek az egyes eszközök jogosultságai esetében van fontos szerepük.

Például:

```
brw-rw---- 1 root disk 8, 0 2008-03-18 07:05 /dev/sda
brw-rw---- 1 root disk 8, 1 2008-03-18 07:06 /dev/sda1
```

Vagyis csak azok a felhasználók írhatják a /dev/sd{a,a1} eszközöket, akik tagjai a disk nevű csoportnak vagy rendszergazdák. Ennél fogva a jogosultság elhatárolás egy fontos eszköze. Ezen „beépített” felhasználókra illetve felhasználói csoportokra jellemző, hogy 0-tól fölfelé növekednek az azonosítóik.

A beépített felhasználók másik fontos felhasználási területe az, hogy egyes szolgáltatások ezeket a meglévő azonosítókat használják fel a működésük során. Részlet egy: `ps -u daemon,www-data -o pid,user,cmd` parancs kimenetéből:

```
PID USER     CMD
2345 daemon   /sbin/portmap -i 127.0.0.1
2821 daemon   /usr/sbin/atd
14349 www-data /usr/sbin/apache2 -DSSL -k start
```

A parancs kimentéből kiolvashatjuk, hogy a daemon nevű felhasználóként kettő szolgáltatás (portmap, atd) fut a lekérdezés pillanatában, míg www-data felhasználóként az apache2 szolgáltatás.

Egyes .deb csomagokban találhatók olyan scriptek, amelyek a csomag telepítésekor automatikusan létrehozzák a szükséges felhasználókat illetve felhasználói csoportokat. Általában 100-999 között szokás a „rendszerfelhasználókat” (programok végrehajtásához kellenek), míg 1000-től felfelé a normál felhasználókat.

Az Operációs rendszerek – Linux jegyzetben bemutatásra került a felhasználói adatok tárolásának módszere (/etc/passwd, /etc/shadow, ...), ezen fájlok részletes felépítése. Így ennek ismeretét feltételezem.

Amikor saját felhasználói csoportot vagy felhasználókat szeretnénk létrehozni, akkor többféle lehetőség közül választhatunk. A továbbiakban csak az ide kötődő parancsokat szeretném bemutatni. Manapság sok lehetőség kínálkozik annak a megoldására, hogy a felhasználók adminisztrációját kényelmesen megoldjuk (pl.:
Webmin segítségével böngészőn keresztül). Ezekkel a továbbiakban nem szeretném foglalkozni, csak a parancssori lehetőségekkel, amely bárhol használható és nincsenek egyéb szoftver követelményei.

Debian GNU/Linux operációs rendszerben a passwd illetve az adduser nevű csomagban találhatók azok a parancsok, amelyek segítségével az adminisztráció megvalósítható. A továbbiakban példákon keresztül fogom bemutatni a parancsok fontosabb lehetőségeit.

Felhasználói csoportok felvétele:

- `addgroup --gid GID group`
- `adduser --group GID group`
- `groupadd -g GID group`

Az előző parancsok esetében a `GID` jelenti a csoport azonosítót, a `group` pedig a csoport nevét.

Felhasználói csoportok törlése:

- `delgroup group`
- `deluser --group group`
- `groupdel group`

Felhasználói csoportok jellemzőinek módosítása:

- `groupmod -g GID -n group_name group`

A módosítás esetében két fő lehetőségünk van. A felhasználói csoport azonosítóját tudjuk megváltoztatni és/vagy a csoport nevét.

Felhasználók felvétele:

- `adduser --uid UID --gid GID user`
- `useradd -u UID -g GID user`

Természetesen a felhasználók egyéb jellemzői is a megfelelő paraméterek segítségével beállíthatók. Az adduser segítségével megvalósítható a felhasználók „interaktív” felvétele. Ebben az esetben rákérdez a felhasználó egyes jellemzőire (GECOS field) a felvétel folyamán.

```
adduser tux
Adding user `tux' ...
Adding new group `tux' (1001) ...
Adding new user `tux' (1001) with group `tux' ...
Creating home directory `/home/tux' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Re-type new UNIX password:
passwd: a jelszó sikeresen frissült
tux felhasználói információinak cseréje
Add meg az új értéket vagy ÜSS ENTER-t az alapértelmezethez
   TELJES Név []: Tux
   Szobaszám []:
   Munkahelyi telefon []:
   Otthoni telefon []:
   Egyéb []:
Is the information correct? [Y/n] Y
```
A parancs pontos kimenete függ a nyelvi beállításoktól. Amennyiben ez magyar, akkor részben angol, részben pedig magyar lesz a parancs kimenete.

Felhasználók törlése:
- `deluser --remove-all-files user`
- `userdel -r user`

A `/etc/adduser.conf` illetve a `/etc/deluser.conf` segítségével megadhatók az adott parancs esetében az alapértelmezések. Amennyiben nem szeretnénk ezektől eltérni, akkor nem szükséges az ott található bejegyzéseket a megfelelő opció segítségével felüldölni. A useradd parancs működésére pedig a `/etc/default/useradd` nevű fájl van hatással. A felhasználói törlés példákban szeretnénk a felhasználó összes fájlt a felhasználóval együtt törölni a rendszerből.

Felhasználók jellemzőinek módosítása:
- `usermod [options] user`

Néhány módosítási opció:
- `-d HOME_DIR` saját könyvtár módosítása
- `-g GROUP` alapértelmezett csoport
- `-G GROUPS` csoport tagságok vesszővel elválasztott listaként
- `-l USER_NAME` átnevezés
- `-s SHELL` alapértelmezett shell módosítása
- `-u UID` UID módosítása

Felhasználók jelszavainak és jelszó beállításainak a módosítása

Rendszergazdaként a saját jelszavunkat illetve bárki más jelszavát is megváltoztathatjuk:
- `passwd [options] user`

Néhány használható opció:
- `-S` a jelszó állapotának megtekintése (/etc/shadow „flag“-ek)
- `-l` lock (a fiók zárolása)
- `-u` unlock (a fiók zárolásának feloldása)
- `-x N` jelszó módosítási kötelezettség N nap után
- `-n N` jelszó csak N nap eltelté után módosítható
- `-w N` jelszó lejárta előtt N nappal figyelmeztet

A felhasználói bejelentkezéshez kötődik a /etc/login.defs nevű fájl. Ebben tudjuk szabályozni a felhasználókra vonatkozó bejelentkezési paramétereket, környezeti változókat, könyvtárakat.

7.2. A PAM (Pluggable Authentication Modules)

Linux operációs rendszeren több alkalmazásnak lehet arra szüksége, hogy a felhasználókat azonosítsa. Ilyen lehet például a login amely a felhasználói bejelentkezést kezeli vagy pedig egy képernyőzár. Mindegyik programnak meg kell tudnia állapítani, hogy a felhasználó megfelelő jelszót adott-e meg. Azért, hogy egy alkalmazásba tárolási módtól függetlenül tudja kezelni a hitelesítést találták ki a PAM-ot. Vagyis az alkalmazásom számára teljesen mindegy, hogy a felhasználói adatok helyileg vannak tárolva vagy hálózaton egy központi szerveren. A PAM „megoldja” a megfelelő adatok elérését, az alkalmazásnak csak a PAM-tól kell „megkérdezni-e”, hogy például létezik-e adott felhasználó a megadott jelszónak megfelelően.

A PAM legfontosabb jellemzői:
• API-t nyújt az alkalmazások számára, amely ezen függvényeket használhatja fel a felhasználók hitelesítésére
• moduláris felépítésű, az egyes modulok dinamikus programkönyvtárként érhetők el és használhatók igény szerint
• „transparent authentication and authorization”: megvalósítja tehát a tárolási módtól független hitelesítést
• az alkalmazások részről támogatás szükséges a használatához

Manapság a legtöbb Linux disztribúció támogatja a használatát. Így a Debiannak is része a 2.2-es verzió óta.

A rendszerben rendelkezésre álló modulok a /lib/security könyvtár alatt érhetők el. A fájlok nevei egységesen pam_ -al kezdődnek.

A PAM beállításait a /etc/pam.d könyvtárban találhatjuk. A Debian azt a konvenciót követi, hogy ezen belül a konfigurációs fájlok nevei megegyeznek annak a szolgáltatásnak a nevével, amelyre a beállítások vonatkoznak. Ezen felül léteznek olyan fájlok, amelyek általánosak (common-*) és több fájiban is ezekre a beállításokra hivatkoznak.
A konfigurációs fájlok esetében a következő séma szerint felépülő utasításokat használhatjuk:

```
type control_flag module-path module-arguments
```

A `type` jelenti a hitelesítés típusát. Van arra lehetőség, hogy megadjuk azt, hogy egy felhasználó több kritériumnak is meg kell, hogy feleljen. A típus lehetséges értékei:

- `account`: a fiókhoz való hozzáférésre vonatkozó szabályok
- `auth`: a hitelesítés módjának a beállítása
- `password`: a jelszó változtatásra vonatkozó szabályok
- `session`: a felhasználó hitelesítése előtt és/vagy után (a munkamenethez kapcsolódó) végrehajtandó feladatok

A `control_flag` jelenti annak a szabályozását, hogy mi történjek, abban az esetben, ha valamelyik modul sikertelen eredményt ad vissza. Ez rendkívül fontos a végső eredmény szempontjából. A lehetséges értékei:

- `requisite`: a hitelesítés azonnali megtagadása, hogyha adott modul sikertelen eredménnyel tér vissza
- `require`: a hitelesítés megtagadását jelenti, de ezután a beállított többi PAM modult is meg fogja hívni a a megtagadás előtt
- `sufficient`: ha ezen modul alapján sikeres a hitelesítés, akkor megadja azt, függetlenül a korábbi moduloktól
- `optional`: a sikereség/sikertelenség csak akkor fontos, hogy ha kizárólag ilyen jellegű modul van beállítva

A `module-path` jelenti a PAM modul nevét vagy elérési útvonalát, hogyha nem az alapértelmezett helyen található. A `module-arguments` pedig a PAM modul számára átadandó fontosabb paramétereket tartalmazhatja.

Az általános beállítások a következők:

```
/etc/pam.d/common-account
account required pam_unix.so

/etc/pam.d/common-auth
auth required pam_unix.so nullok_secure

/etc/pam.d/common-password
password required pam_unix.so nullok obscure min=4 max=8 md5

/etc/pam.d/common-session
session required pam_unix.so
```

A `pam_unix.so` modul jelenti a Unix rendszerekben általánosságban használt `/etc/passwd`, és `/etc/shadow alapján történő hitelesítést.
A nulllok beállítás megengedi, hogy azok a felhasználók, akiknek nincsen jelszavuk, azok is be tudjanak jelentkezni. Az *obscure* a jelszó „erősségének” ellenőrzésére vonatkozik, a *min* és *max* a jelszó hosszára. Az *md5* segítségével állíthatjuk be, hogy a jelszavaink az MD5 hash algoritmus alkalmazásával legyenek tárolva.

Gyakran használt PAM modulok:

- *pam_unix.so* standard Unix hitelesítés
- *pam_access.so* hozzáférés szabályozása (/etc/security/access.conf)
- *pam_cracklib.do* jelszó ellenőrzése
- *pam_deny.so* hozzáférés megtagadása
- *pam_env.so* környezeti változók beállítása (/etc/environment)
- *pam_lastlog.so* az utolsó bejelentkezés helye és ideje
- *pam_limits.so* erőforrások korlátozása (/etc/security/limits.conf)
- *pam_listfile.so* fájl tartalom alapján való hitelesítés
- *pam_ldap.so* LDAP szerver alapján való hitelesítés
- *pam_mail.so* mailbox információk mutatása bejelentkezés után
- *pam_mkhomedir.so* a felhasználók saját könyvtárának létrehozása bejelentkezéskor
- *pam_motd.so* a /etc/motd kiírata bejelentkezéskor után
- *pam_nologin.so* ha a /etc/nologin fájl létezik, akkor csak root-ként lehet bejelentkezni
- *pam_permit.so* feltétel nélkül garantálja az elérést
- *pam_rootok.so* amennyiben root-ként vagyunk bejelentkezve nem szükséges adott alkalmazás esetében a hitelesítés
- *pam_securetty.so* root-ként való bejelentkezés engedélyezése a /etc/securetty alapján
- *pam_shells.so* valós shell vizsgálata /etc/shells alapján

Az előző felsorolásból látható, hogy számos feladat elvégzésére léteznek PAM modulok. Mindezek mellett természetesen van arra is lehetőség, hogy saját modulokkal kiegészítsük a rendszert.

Példa több PAM modult is használó fájlra (/etc/pam.d/ssh):

```bash
# PAM configuration for the Secure Shell service
# Read environment variables
auth       required pam_env.so # [1]
auth       required pam_env.so envfile=/etc/default/locale
@include common-auth

# Disallow non-root logins when /etc/nologin exists.
account    required   pam_nologin.so
@include common-account

# Standard Un*x session setup and teardown.
@include common-session
session    optional   pam_motd.so # [1]
session    optional   pam_mail.so standard noenv # [1]
session    required   pam_limits.so
```

73
A PAM esetében fontos, hogy miként kezelje a számára ismeretlen alkalmazásokat. Itt azokra az alkalmazásokra gondolok, amelyek PAM hívásokat használnak, csak nem tartozik hozzájuk definiált konfigurációs fájl. Ezen alkalmazásokra a /etc/pam.d/other fájl tartalma fog vonatkozni.
8. A TCP/IP alapú hálózat beállítása

Amikor Debian GNU/Linux-et telepítünk, akkor van arra lehetőségünk, hogy a hálózati paramétereket beállítsuk. Természetesen ezeket a későbbiek folyamán igény szerint módosíthatjuk. A továbbiakban bemutatom, hogy milyen módon célszerű a hálózati működést beállítani és ellenőrizni. A továbbiakban csak ethernet-tel és IPv4-el foglalkozom.

8.1. A hálózati beállítás folyamata

Amikor egy gép hálózatban működik, abban az esetben szükség van bizonyos paramétereket beállítani a hálózati eszközön és természetesen az operációs rendszerben. A kettő sokszor nem kezelhető egymástól függetlenül. A beállításnál ajánlott az alábbi sorrendben ellenőrizni a hálózat működését:

- A megfelelő eszközmeghajtók betöltése. Ahhoz, hogy a hálózat működhessen a kernelnek ismernie kell az adott hálózati eszközt. A /proc/net/dev fájlból tájékozódhatunk a rendelkezésre álló interfészekről. A Debian 5.0 használja az udev-et. Ami alapértelmezésként megjegyzi az egyes hálózati eszközök MAC címét, és e szerint rendel hozzájuk interfész neveket. Vagyis lehetséges, hogy az interfész létezik, csak nem az alapértelmezett néven. (Az 5.0 már nem jegyzi meg a VMware-es MAC címeket.)
- Az eszközmeghajtók mellett természetesen szükséges a kernel részéről a használt protokollok támogatása. A /proc/net/protocols fájlból tájékozódhatunk.
- Miután meggyőződtünk arról, hogy rendszerünk alkalmas a hálózati kommunikációra ellenőriznünk kell, hogy létezik-e fizikai kapcsolata (linkje) hálózati eszköznek. Lehetséges ugyanis, hogy a kábellel vagy a csatlakozóval van a probléma, vagy például a switch adott portja van rosszul konfigurálva.
- Amennyiben az előzőek rendben vannak, következhet az IP cím és egyéb hálózati paraméterek beállítása.
- Miután a hálózat működik, utána következhet bármilyen TCP/IP-t használó szolgáltatás telepítése.

Mielőtt az ethernet interfészeket ellátnánk IP paraméterekkel ajánlatos ellenőriznünk a használt beállításaikat. Némely esetben a hálózati kártya és a switch „nem érti meg automatikusan egymást” (autonegotiation). Ennek a tűnete lehet például a link időnkénti szakadása és/vagy a maximális átviteli sebesség töredéke. Ekkor a hálózati kártya manuális beállítása segíthet:

```
ettool -i eth0
ethernet kártya driverének lekérdezése
```

```
ettool -i eth0
```

```
ettool -s eth0 speed 100 duplex full autoneg off
100MB/s full duplex üzemmod beállítása, autoneg. kikapcsolása
```

Amennyiben a driver MII-t (Media Independent Interface) használ, akkor az mii-tool parancs segítségével is megtekinthetjük és beállíthatjuk a paramétereket:

```
mii-tool eth0
```
eth0: negotiated 100baseTx-FD, link ok
ethernet kártya paramétereinek lekérdezése
mii-tool -F 100baseTx-FD eth0
100MB/s full duplex üzemmód beállítása

Amennyiben a hálózati kapcsolónk használ VLAN-okkal megvalósított szeparációt, úgy az adott sorszámú virtuális LAN-ba fel kell vennünk a hálózati eszközünket.

```
vconfig add eth0 305
```

az eth0 interfész felvétele a 305-ös sorszámú VLAN-ba
```
vconfig remove eth0.305
```

az eth0 interfész eltávolítása a 305-ös sorszámú VLAN-ból

A továbbiakban a TCP/IPv4-es hálózat esetében a következő eszközök lesznek fontosak:

- lo loopback
- eth0, eth1, ... ethernet kártyák
- ppp0, ppp1, ... pont-pont kapcsolatok
- wlan0, wlan1, ... wifi kártyák

8.2. A hálózati beállítása a /etc/network/interfaces alapján

A Debian GNU/Linux a /etc/network/interfaces fájlt használja a hálózati paraméterek beállítására.

```
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
  address 192.168.31.2
  netmask 255.255.255.0
  network 192.168.31.0
  broadcast 192.168.31.255
  gateway 192.168.31.1

allow-hotplug eth1
iface eth1 inet dhcp
```

Az lo interfész helyi kommunikációra használható 127.0.0.1-es IP címmel. Az eth0 interfész esetében fix IP cím (static) beállítására mutatok példát. A fontosabb beállítási lehetőségek:

- address IP cím megadása
- netmask alhálózati maszk
- network alhálózat címe
- broadcast az üzenetszórás esetében használt IP cím
- gateway az átjáró IP címé

Az előző felsorolásból nem kötelező megadni az alhálózat címét illetve a
broadcast címet, amennyiben ezek automatikusan képezhetők az IP cím és a netmask felhasználásával. Amennyiben adott interfészsen keresztül nem érhető el külső hálózat, akkor nem szükséges az átjáró megadása sem.

Az eth1 interfész esetében dinamikusan történik az IP cím kiosztása. Ebben az esetben a hálózati kommunikációhoz szükséges paramétereket egy DHCP szervertől kaphatja meg a számítógép. Ebben az esetben feltétlenül szükséges egy DHCP kliens alkalmazás. pl.: dhclient, dhclient3, pump, ...

A konfigurációs fájl esetében tehát az iface-el kezdődő sorok jelenti egy adott interfészre vonatkozó beállítások elejét. Ezután következhet az interfész neve, majd pedig a címosztály, amely IPv4 esetében az inet. Végezetül pedig az interfész esetében használt módszer az paraméterek hozzárendelésére.

Ezen lehetőségek mellett tetszőleges parancsokat is végrehajthatunk bizonyos szituációkon kívül:

- pre-up, up, post-up elindítás előtt, elindításkor, elindítás után
- pre-down, down, post-down leállítás előtt, leállításkor, leállítás után

Az auto-val kezdődő sorok megadják azokat az eszközöket, amelyeket a gép bekapcsolását követően automatikusan konfigurálni kell és el kell indítani. Az allow-hotplug esetében csak akkor kerül sor az eszköz elindítására, amennyiben a fizikai link létrejött.

Részlet egy VLAN-t is tartalmazó konfigurációs fájlból

```bash
iface eth1 inet static
  address 172.30.0.1
  netmask 255.255.255.0
  post-up vconfig add eth1 731 && ifconfig eth1.731 up
  pre-down vconfig rem eth1.731
```

A Debian „lenny” alapból tartalmazza az IPv6 támogatást is az IPv4 mellett. Amennyiben erre nincsen szükségünk nyugodtan ki is kapcsolhatjuk. Ha a `/etc/modprobe.d/aliases nevű fájl esetében a
alias net-pf-10 ipv6
sort lecseréljük
alias net-pf-10 off -ra, úgy a rendszer újraindítását követően már nem töltődik be automatikusan az ipv6 kernel modul, és rajta keresztül a protokoll támogatása.

A `/etc/init.d/networking szkript segítségével leállíthatjuk vagy elindíthatjuk a hálózat működését. Mielőtt a konfigurációs fájlt szerkesztjenünk ajánlott leállítani a hálózat működését, majd pedig a módosítások után újra elindítani.

8.3. A hálózat beállításához kapcsolódó parancsok

```
ifup, ifdown
```

Amenyiben egy hálózati eszköz paraméterei be lettek állítva a `/etc/network/interfaces fájlban, de nem történt meg az automatikus indítása, úgy az ifup parancs segítségével az eszköz indítható. Az ifdown parancs
felhasználásával pedig egy működő interfész állítható le.

ifconfig
Hálózati interfész konfigurálására alkalmas.
Példák a használatára:
 • ifconfig eth0 up
 interfész UP állapotba hozása IP paraméterek definiálása nélkül
 • ifconfig eth0 192.168.31.1 up
 interfész indítása adott IP címmel és alapértelmezett netmask és broadcast címmel
 • ifconfig eth0 192.168.31.1 netmask 255.255.255.192 up
 interfész indítása adott IP címmel, netmask-al és alapértelmezett broadcast címmel
 • ifconfig eth0 192.168.31.1 netmask 255.255.255.192 broadcast 192.168.31.60 up
 interfész indítása adott IP címmel, netmask-a, és broadcast címmel.
 • ifconfig eth0 hw ether 00:50:56:00:02:02
 MAC cím módosítása (az eszköz működése előtt)

Az előzőekben felsorolt lehetőségek mellett még lehetséges az eszközt úgynevezett promiscuous (promisc) módba kapcsolni. Ebben az esetben az eszköz a hálózatban menő összes csomagba képes lesz beletékeni. Az ifconfig parancssal interfész(ek) paramétereit is meg tudjuk tekinteni:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:50:8D:A4:12:BB
 inet addr:192.168.31.2 Bcast:192.168.31.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:69121567 errors:0 dropped:0 overruns:3 frame:0
 TX packets:110407338 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1957228746 (1.8 GiB) TX bytes:3020905526 (2.8 GiB)
 Interrupt:18 Base address:0x4000

route
A interfészek paramétereinek megadása mellett nagy gondot kell fordítanunk az útválasztásra. A kernel útválasztási táblájának manipulálására használhatjuk a route parancsot.

Példák route parancs használatára:
 • route add -host 172.31.0.1 dev eth1
 útvonal hozzáadás egy hoszthoz
 • route del -host 172.31.0.1 dev eth1
 útvonal törlése egy hoszthoz
 • route add -net 172.31.0.0 netmask 255.255.0.0 dev eth1
 útvonal hozzáadás egy hálózati tartományhoz
 • route del -net 172.31.0.0 netmask 255.255.0.0 dev eth1
 útvonal törlése egy hálózathoz tartomány esetében
 • route add -net 172.31.0.0 netmask 255.255.0.0 gw 172.31.0.1 dev eth1

78
útvonal hozzáadás egy hálózati tartományhoz saját átjáróval
• route add default gw 192.168.31.1 dev eth0
alapértelmezett átjáró megadása
• route del default gw 192.168.31.1 dev eth0
alapértelmezett átjáró törlése

A route parancs felhasználásával tehát az útválasztási tábla manipulálása lehetséges illetve természetesen az aktuálisan érvényben lévő szabályok megtekintése.

```
route
Kernel IP routing table
Destination     Gateway        Genmask        Flags Metric Ref   Use  Iface
192.168.31.0     *             255.255.255.0   U     0      0      0  eth0
default       192.168.31.1     0.0.0.0         UG    0      0      0  eth0
```

8.4. A névfeloldás konfigurációja

Abban az esetben, hogyha az IP címet és az egyéb paramétereket helyesen beállítottuk, akkor a hálózatunk már működőképes. Tetszőleges program esetében IP címek felhasználásával tudunk kommunikálni. A gyakorlatban azonban az emberek zöme jóval könnyebben meg tud jegyezni szöveges információkat, mint számokat. Főként ezért találták ki a DNS-t (Domain Name System), amely egy nagy elosztott adatbázisnak tekinthető. Mindegyik tartományon belül létezhetnek olyan számítógépek, amelyek a tartományban lévő gépek esetében oda-vissza irányban ellátja a névfeloldás feladatát. Ahhoz, hogy telepített rendszerünk képes legyen név alapján is kommunikálni néhány beállításra szükségünk van.

Egy gépre ún. FQDN (Full Qualified Domain Name) segítségével szokás hivatkozni. Például: www.duf.hu
Egy FQDN-t két részre oszthatunk:
• hosznév (www)
• tartománynév (duf.hu)

A hosznév beállítása egy adott gép esetében a /etc/hostname felhasználásával történik. Ebben a fájlban az adott gép nevét kell megadnunk. Amikor a számítógépünkön a Linux indul, akkor a hostname --file /etc/hostname parancs hatására az itt tárolt név automatikusan beállításra kerül.

A névfeloldáshoz kötődő konfigurációs fájlok:
• /etc/hosts
 127.0.0.1 localhost
 193.225.187.80 web-okt.duf.hu web-okt
Amennyiben az adott hálózatban nincsen, vagy nem működik a névszerver, akkor helyi beállítások alapján is megtörténhet a névfeloldás.
Ezen fájl esetében három mezőt adhatunk meg tabulátorral elválasztva:
 IP cím FQDN vagy hosznév alias
• /etc/host.conf
 order hosts,bind
multi on
Ez a fájl határozza meg a névfeloldás sorrendjét. Amikor névfeloldást kell végezni, abban az esetben először a /etc/hosts fájlhoz kell fordulni, majd pedig a beállított névszerver(ek)hez. A multi on beállítás annyit jelent, hogy a hoszthoz tartozó összes bejegyzéssel vissza fog térni a resolver.

• /etc/resolv.conf

```
search duf.hu
domain duf.hu
nameserver 193.225.187.65
nameserver 193.225.187.202
```

Ebbe a fájlba kerül a keresési és az alapértelmezett tartomány, illetve a névszerver(ek) IP címe(i). Amikor névfeloldási feladatot kell végezni, akkor azt az operációs rendszer az itt beállított szerverek segítségével próbálja megvalósítani.

8.5. A hálózat működésének tesztelése

Miután úgy gondoljuk, hogy minden hálózati beállításunk rendben van célszerű a működés tesztelése. Ezt különböző alkalmazások segítségével tehetjük meg.

ping

ICMP echo-request (ping) üzenet küldése egy gépnek, és várja a tőle érkező ICMP választ (echo-reply). Amennyiben ez sikeresen visszaérkezett, akkor a gép hálózati elérése működik. Nem biztos azonban, az hogy bármilyen UDP vagy TCP fölötti szolgáltatás is működik. Olyan is előfordulhat, hogy a gép meg sem kapja az ICMP üzenetet vagy csak egyszerűen nem válaszol rá.

```
ping -c 4 192.168.31.1
PING 192.168.31.1 (192.168.31.1) 56(84) bytes of data.
64 bytes from 192.168.31.1: icmp_seq=1 ttl=63 time=0.488 ms
64 bytes from 192.168.31.1: icmp_seq=2 ttl=63 time=0.508 ms
64 bytes from 192.168.31.1: icmp_seq=3 ttl=63 time=0.512 ms
64 bytes from 192.168.31.1: icmp_seq=4 ttl=63 time=0.518 ms
--- 192.168.31.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2997ms
rtt min/avg/max/mdev = 0.488/0.506/0.518/0.025 ms
```

traceroute

Ezzel a paranccsal megvizsgálhatjuk azt, hogy milyen útvonalon keresztül történik meg a célgép elérése. A Debian 5.0 esetében használható a parancs `tracert` néven is.

```
traceroute www.linux.hu
traceroute to www.linux.hu (212.40.125.217), 30 hops max, 40 byte packets
1  193.225.187.254 (193.225.187.254)  0.554 ms  0.475 ms  0.451 ms
2  c72-gbeth0-3.dunaujvaros.hbone.hu (195.111.106.217)  0.521 ms  0.439 ms  0.439 ms
3  c6513-g2-3.vh.hbone.hu (195.111.97.90)  1.688 ms  1.605 ms  1.625 ms
4  bix.externet.hu (193.188.137.43)  1.638 ms  1.627 ms  1.652 ms
```
A parancs kimenetéből arra is tudunk következtetni, hogy meddig működik megfelelően a hálózat, illetve hol akadnak el az egyes csomagok.

cmd, nslookup, dig
A névszerver működésének lekérdezésére bármelyik parancs felhasználható. A parancsok segítségével normál, illetve reverse DNS lekérdezések is megvalósíthatók.

host www.linux.hu
www.linux.hu has address 212.40.125.217
www.linux.hu mail is handled by 10 mail.linux.hu.

host 212.40.125.217
217.125.40.212.in-addr.arpa domain name pointer abos.linux.hu.

8.6. A hálózat megfigyeléséhez kapcsolódó parancsok
Nagy sor olyan alkalmazás létezik, amely kapcsolódik a hálózat működéséhez, a nyitott kommunikációs portok vizsgálatához.

netstat
Statisztika a hálózati kommunikációról, illetve a megnyitott portokról.

A netstat parancs fontosabb paraméterei:
• -a az összes socket figyelése
• -i IF csak adott interfész figyelése
• -l a listening (figyelő) állapotban lévő socket-ek figyelése
• -n portszámok mutatása a szolgáltatásnév helyett
• -p socketet használó programok mutatása
• -r az útválasztási tábla mutatása
• -s összegzés (summary)
• -t csak TCP mutatása
• -u csak UDP mutatása
• -w raw socket (nyers adatfolyam)

Amennyiben a netstat parancsot paraméter nélkül használjuk, megmutatja a jelenleg aktív TCP/IP illetve Unix Domain socket kapcsolatokat.

netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 64717 0 laptop:44029 r24-live.duf.hu:8000 ESTABLISHED
tcp 0 0 laptop:41347 kami:ssh ESTABLISHED

Részlet a netstat -ltp parancs kimenetéből:

Active Internet connections (only servers)
Local Address Foreign Address State PID/Program name
localhost.localdo:mysql *:* LISTEN 2723/mysqld
Az előző listából kiolvasható, hogy a számítógépen nyitva van a www, ftp, ssh, smtp és a mysql alapértelmezett portja. A jobb szélső oszlopban láthatjuk azon alkalmazást, amely a megnyitott portot figyeli. A mysql szolgáltatás csak localhost-ról érhető el, az összes többi pedig bármely interfészen keresztül.

nmap

A nmap segítségével port pásztázást lehet végrehajtani egy távoli gépen. Képes a program a távoli gép operációs rendszerének meghatározására. Egy hálózati támadás előtt ajánlott „felmerni a terepet”. Megnézni az ott futó szolgáltatásokat, az esetleges hibákat, biztonsági réseket figyelembe venni.

```
nmap -A -O 192.168.31.1
```

Részlet a parancs kimenetéből:

```
Interesting ports on 192.168.31.1:
PORT    STATE SERVICE VERSION
21/tcp   open     ftp     ProFTPD 1.3.0
22/tcp   open     ssh     OpenSSH 4.3p2 Debian 9 (protocol 2.0)
25/tcp   open     smtp          Postfix smtpd
80/tcp   open     http    Apache httpd
```

```
Uptime 13.218 days (since Thu Mar 6 07:50:14 2008)
Service Info: OSs: Linux, Unix
```

A parancs segítségével érzékeny információk is nyerhetők. Rendszergazdaként természetesen a saját rendszerünk biztonságát teszthetjük a segítségével és védelmi módszereket dolgozhatunk ki az egyes támadás típusok kivédésére.

tcpdump

A tcpdump egy elterjedt sniffer alkalmazás, amely segítségével megfigyelhetjük a hálózati forgalmat. Képesek vagyunk szűrők segítségével a számunkra hasznos információit tartalmazó csomagokat megkeresni.

Egyszerű példák a használatára:

- `tcpdump host 192.168.31.102`
 - Az adott IP címmel rendelkező gép összes forgalmának figyelése
- `tcpdump -x port 80`
 - A 80-as portot használó forgalmak mentése hexadecimális formában
- `tcpdump dst 192.168.31.102 and port 80`
 - A 192.168.31.102 IP cím 80-as portjának figyelése
- `tcpdump icmp and src 192.168.31.1`
 - A 192.168.31.102 forrás IP-vel rendelkező icmp csomagok figyelése.

A parancs rengeteg opcióval rendelkezik. A csomagokban lévő tetszőleges mező alapján megoldható a csomagok elkapása. Emellett a parancs képes fájlba menteni, majd azt offline módon analizálni.
Nagyon sok olyan alkalmazás létezik, amely kapcsolódik a hálózati kommunikáció megfigyeléséhez. Ilyen például a wireshark(ethereal), netcat, cheops, ettercap, nagios, nast, snort, hogy csak a legismertebbeket említsem.

Az inetd és tcpd
A hálózati szolgáltatások indításához kapcsolódik az inetd (internet superserver daemon). Ez egy olyan speciális szolgáltatás, amely képes több hálózati szerver szolgáltatás indítására. Az inetd figyeli a /etc/inetd.conf-ben beállított portokat, majd igény szerint a beállított hálózati szolgáltatásokat elindítja. Ezzel elsősorban a rendszer terheltségét lehet csökkenteni.

A /etc/inetd.conf esetében a következő mezőket különböztethetjük meg:

- **service** a szolgáltatás neve (/etc/services)
- **type** a szolgáltatás típusa: stream vagy dgram
- **protocol** a kommunikációs protokoll neve (/etc/protocols)
- **wait/nowait** a socket kezelésének módja
- **user/group** a felhasználó és felhasználói csoport
- **server** a futtatandó program
- **cmdline** a futtatandó program argumentumai

Példa inetd.conf beállításokra:
```
ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd -i
talk dgram udp wait nobody.tty /usr/sbin/in.talkd in.talkd
```

A /etc/services fájlban találhatjuk a szolgáltatások neveinek és a hozzájuk tartozó portszámoknak az összerendelése. A fájl mezői:

- **service** a szolgáltatás neve
- **port/protocol** a portszám és a szállítási protokoll megadása
- **alias** alnév az adott szolgáltatásra (nem kötelező megadni)

Példa sorokra a /etc/services fájlból:
```
ssh       22/tcp                       # SSH Remote Login Protocol
www       80/tcp
          # WorldWideWeb HTTP
nfs     2049/udp                       # Network File System
```

A /etc/protocols nevű fájlból pedig a protokollokra vonatkozó adatok vannak tárolva. A fájl mezői:

- **protocol** a protokoll neve
- **azonosító** az IP fejlécben a protokoll azonosítója
- **alias** alnév az adott protokollra

Példa sorokra a /etc/protocols fájlból:
```
icmp    1       ICMP            # internet control message protocol
tcp     6       TCP             # transmission control protocol
udp     17      UDP             # user datagram protocol
```

Ezen konfigurációs fájlok alapján megoldható az, hogy a portszámok helyett a szolgáltatás nevét mutassák meg az egyes alkalmazások. Erre láthatunk példát a netstat parancs esetében.
A tcpd (tcp wrapper daemon) segítségével megvalósítható a szerver szolgáltatások esetében a hozzáférés vezérlése illetve a szolgáltatás naplózása syslog-on keresztül.

Az inetd.conf-ban annyit kell tenni, hogy a futtatandó program nevét le kell cserélni a /usr/sbin/tcpd-re, és az ő argumentumaként kell megadni a futtatandó szerverprogram nevét. Ekkor az alkalmazás indítása tehát nem közvetlenül, hanem a tcpd felhasználásával történik.

Az előző példában szereplő szolgáltatás átalakítása tcpd-vel való futtatásra:

ntalk dgram udp wait nobody.tty /usr/sbin/tcpd /usr/sbin/in.ntalkd

A hozzáférés szabályozása a /etc/hosts.allow és a /etc/hosts.deny konfigurációs fájlok segítségével valósítható meg.

A fájlok esetében a következő szabályok szerint adhatjuk meg a jogosultságokat:

```
service : host list
```

Ezen kívül használhatunk speciális direktívákat is.

Példák lehetséges beállításokra:

```
ALL:ALL
in.talkd: ALL EXCEPT LOCAL, .duf.hu
ALL: .duf.hu EXCEPT web-Okt.duf.hu
ALL: PARANOID
```

A jogosultságok értelmezése az alábbi szabályok szerint történik:

- Amennyiben adott szolgáltatásra vonatkozó engedélyezés megtalálható a /etc/hosts.allow nevű fájliban, akkor van hozzáférés, egyébként
- ha a /etc/hosts.deny fájliban meg van tiltva a hozzáférés, akkor nincsen, egyébként pedig van hozzáférés.
A hálózati biztonságról dióhéjban

A hálózat biztonság egy összetett fogalom, komoly elméleti háttérrel és vizsgálati módszerekkel rendelkezik. A továbbiakban nem elméletben szeretném megközelíteni a témakört, hanem szeretném a vele kapcsolatos gyakorlati tapasztalataimát bemutatni.

Ahhoz, hogy egy hálózati szolgáltatást nyújtó számítógép mennyire biztonságos, azt nagyban befolyásolják a körülmények. A mi esetünkben a Debian GNU/Linux operációs rendszert futtató számítógép egy hálózatban lát el különböző feladatokat. Így a hálózat biztonságát és az adott gép biztonságát nem lehet élesen különválasztani.

Egy hálózat esetében beszélnünk kell külön-külön az egyes eszközök (szerverek, switchek, routerek, …) biztonságáról illetve ezeknek a kockázatairól. De nem szabad elfeledkezniünk ezeknek az egymásra gyakorolt hatásáról sem. A továbbiakban csak a Linux szerver biztonsági problémáira, illetve biztonság növelésére fogunk koncentrálni.

A biztonság esetében fontos tényező a fizikai biztonság. Egy szervert olyan helyen kell üzemeltetni, ahol csak az arra jogosultak férhetnek hozzá közvetlenül a hardver eszközökhöz. További fontos dolog, hogy a működés szempontjából fontos egyéb paramétereket (pl.: külső hőmérséklet) állandó szinten tartsunk.

A biztonság másik fontos tényezője az ún. ügyviteli biztonság. Egy hálózati program vagy alkalmazás révén egy konkrét feladatra tudunk megoldást találni. Ez természetesen lehet egy nagyobb rendszer egy kicsi építő eleme is. Mi a továbbiakban feltételezzük, hogy telepítettünk egy Debian GNU/Linux operációs rendszert, és ezt szeretnénk minél biztonságosabban használni és üzemeltetni.

Egy hálózati operációs rendszer esetében a következő tényezők befolyásolják a rendszer biztonságát:

- az operációs rendszer eszköz kezelése, jogosultságai
- az operációs rendszer hálózat kezelése (TCP/IP Stack)
- a használt hálózati szolgáltatások hozzáférései, illetve beállításai
- az alkalmazások által használt kommunikációs módszere
- a rendszert használó személyek (az ember a leggyengébb láncszem)

A biztonság tekintetében vannak általános szabályok:

- minden felhasználónk csak annyi jogosultsággal rendelkezzen, amennyire az ő munkájához feltétlenül szüksége van
- „nehezen kitalálható” jelszavak használata
- csak a feltéétlenül szükséges protokollokat használjuk
- csak a feltéétlenül szükséges hálózati szolgáltatásokat futtassuk
- korlátozzuk az egyes szolgáltatások elérhetőségét (pl.: hálózati interfész, MAC cím, IP cím, ... alapján) amennyiben ezt a szolgáltatás lehetővé teszi
- használjunk tűzfalakat az elérés korlátozására
- védekezzünk a DoS típusú támadások és az elárasztás (flooding) ellen
- a kommunikációs csatorna titkosítása
A Debian GNU/Linux operációs rendszer biztonsága fokozható az alábbiak segítségével:

• ne adjunk shellt a felhasználóinknak, hogyha az nem feltétlenül szükséges
• kerüljük a setuid bit használatát
• azokat a partíciókat, amelyeket elérhetővé teszünk lehetőség szerint csatlakoztassuk noexec, nosuid, nodev opcióval.
• ne futtassunk felesleges szolgáltatásokat
• amennyiben lehetséges az egyes szolgáltatásokat ne root-ként, hanem normál felhasználóként futtassuk
• alkalmazzunk biztonság növelő patch-eket a kernel esetében (pl.: grsecurity, RSBAC)
• ahol csak lehet, használjunk titkosított kommunikációt
• használjuk a TCP wrapper démont az inetd-vel vagy a xinetd-t, ahol van lehetőség a hálózati elérés korlátozására
• állitsuk be, hogy a szerver alkalmazások csak a működésükhöz szükséges fájlokhoz férjenek hozzá, semmi máshoz ne
• figyeljünk oda a puffer túlcsordulásos hibákra, használjunk ellenőrzendő módszereket (PaX, Exec Shield, ...)
• futtassuk az egyes szolgáltatásokat saját „chroot környezeten” belül
• csak hivatalos forrásból származó, digitálisan aláírt csomagokat használjunk.

Az előzőekben felsoroltak mellett fontos feladatok:

• a szolgáltatások megfelelő naplózása
 A naplófájlokat célszerű külön partícióra tenni. A syslog-ng segítségével megoldható a központosított naplózás, ahol több szerver naplóbejegyzései egy erre a célra kijelölt szerveren tárolódnak.
• a naplófájlokat monitorozni kell, amennyiben adott helyről megpróbálják a rendszer működését gátlolni, vagy feltörni, akkor meg kell tenni az ellenlépéseket.
• fontos, hogy készítsünk biztonsági mentéseket a működő rendszerről, hogy a későbbiekben a mentésből vissza tudjuk állítani a rendszerünket. A redundáns adattárolás nem pótolja a biztonsági mentést, hiszen ha valakinek sikerül a rendszert feltörni, akkor az adatokat törölhet. Ebben az esetben természetesen a RAID sem segít.
• időnként készítsünk biztonsági elemzést a rendszerünkön. Vizsgáljuk meg, hogy újabb technológiákkal fokozható-e a rendszerek biztonsága.
• a használt alkalmazások esetében figyeljünk a biztonsági riasztásokra. Vizsgáljuk meg, hogy bennünket is érinthet-e a napvilágot látott biztonsági probléma.
• rendszeresen végezzünk szoftver frissítést, ezáltal biztosítsuk, hogy rendszerünk egyes komponensei naprakész legyenek.

Biztonsági szempontból nagyon fontos a felhasználók megfelelő célra használják fel a kapott jogosultságaikat. Amennyiben a felhasználók képzetlenek, hiába bármilyen szuper biztonságos rendszer, akkor az ő jogosultságaikon keresztül a támadók könnyebben férhetnek hozzá a rendszerhez. Ezt felhasználva a biztonság jóval egyszerűbben kijátszható. Másrészt pedig könnyebben bedölnhetnek az internet felől érkező fenyegetéseknek, amelynek manapság már nem a tudás fitogtatása, hanem a haszonszerzés a legfőbb célja.
10. Fontosabb hálózati szolgáltatások Debian GNU/Linux operációs rendszerben

A hálózati operációs rendszerek legfontosabb feladata, hogy különböző szolgáltatásokat nyújtsanak, amelyek felhasználásával egy informatikai rendszer adott feladatot el tud látni. A továbbiakban a legnépszerűbb ilyen alkalmazásokat fogom bemutatni. Minden feladatra sokféle alkalmazás létezik. Az, hogy egy adott feladatra melyik alkalmas leginkább, az függ természetesen az alkalmazás lehetőségeitől, de nem szabad figyelmen kívül hagyni a rendszergazda személyes tapasztalatait. Ha valaki jól ismer egy adott programot, akkor biztonságosabban tudja megoldani az adminisztrálását, a nem várt problémákat is valószínűleg hamarabb meg tudja oldani.

10.1. Az OpenSSH

- **Titkosított távoli bejelentkezés** a szerverre az ssh protokoll felhasználásával. A bejelentkezés tetszőleges operációs rendszer alól megtehető, amelyre létezik ssh kliens program. Linux operációs rendszerben az ssh nevű parancs a távoli bejelentkezésre. Míg „ablakozós” operációs rendszerből például a putty.exe felhasználásával oldható meg a távoli bejelentkezés. A távoli rendszeradminisztrálás egyik fontos eszköze.

- **Fájl átvitel lehetősége** scp (secure copy) protokollon keresztül. A fájl átvitel esetében az sshd elindítja a szerveren a /usr/bin/ scp parancsot, amely felhasználásával történik a fájl(ok) kiszolgálása. Linux operációs rendszer esetében az scp parancs segítségével oldható meg a fájl átvitel. „Ablakozós” operációs rendszerben erre a feladatra használható a WinScp.exe alkalmazás.

- **Fájl átvitel lehetősége** sftp (secure ftp) protokoll felhasználásával. Ennek a gyakorlati megvalósítását a /usr/lib/openssh/sftp-server végzi, amely az sshd egy alrendszerének tekinthető. Linux operációs rendszerben az sftp parancs használatával megoldható a fájl átvitel, míg az előző bekezdésben említett WinScp képes sftp alapú átvitelre is az scp használata mellett.

- **Megvalósítható a segítségével a port forwarding.** Ez annyi jelent, hogy képesek vagyunk egy önmagában titkosítást nem használó protokollt titkosított csatornán átvinni.

- **Az ssh képes az X11 forwarding-ra.** Ez annyi jelent, hogy a távoli gépen futó grafikus alkalmazás képét képesek vagyunk átvinni titkosítottan egy másik gépre.

Az OpenSSH egy nyílt forrású implementációja az ssh protokollnak. Számos elterjedt titkosítási algoritmust támogat. Ilyen például a DES, Blowfish, 3DES, AES, és ezeknél különböző méretű kulcsonk alapuló változataik.
A Debian GNU/Linux 5.0 az OpenSSH 5.1-et tartalmazza. Az openssh-client csomag tartalmazza a kliens alkalmazásokat, az openssh-server nevű csomag pedig a szervert. Amennyiben mindkettőt szeretnénk telepíteni, akkor telepíthetjük az ssh nevű csomagot. Ekkor automatikusan települni fog mind az ssh kliens, mind pedig a szerver a függőségek miatt.

10.1.1. Az SSH protokolljai

Az ssh működése a nyilvános kulcsú titkosításon alapul. Ez annyit jelent, hogy van egy kulcspárunk, amely egy titkos kulcsból (private key) és egy nyilvános kulcsból (public key) áll. Ezeknek fontos szerepük van a kommunikációs csatorna felépítésekor.

Az ssh esetében kétféle protokollt használhatunk:

SSH protocol version 1.
Ebben az esetben a szerver rendelkezik egy 1024 bites RSA kulcs párral, amelyet a /etc/ssh könyvtárban tárol (HostKey). Emellett rendelkezik egy másik RSA kulcs párral, amelyet alapértelmezésként óránként újragenerál.

Kapcsolatfelvételkor a következő történik:
- a kliens kapcsolódik a szerver megfelelő portjához (alapértelmezésként a 22-s TCP port)
- a szerver elküldi a publikus kulcsait a kliensnek
- a kliens ellenőrzi, hogy a kulcsok tárolva vannak-e, ha igen akkor összehasonlítja őket a tárolt változattal
- a kliens generál egy 256 bites véletlen számot, amelyet a publikus kulcsokkal titkosítva visszaküld a szervernek
- a szerver a privát kulcsa segítségével visszafejt a küldött véletlen számot, majd ezt a véletlen számot használják a továbbiakban a kommunikáció paramétereinek az egyeztetésére
- a kliens kiválasztja a titkosítás algoritmusát amelyet a „normál adatforgalom” esetében használnak. A DES, Blowfish vagy a 3DES hagyományos titkosítási módszerek támogatottak, amely közül a 3DES az alapértelmezett.
- a kliens hitelesítése (authentication)

SSH protocol version 2.
Manapság általában csak az újabb, a 2. protokoll a használatos. A másik támogatását ajánlott tiltani.

10.1.2. Az SSH fontosabb hitelesítési lehetőségei

Miután a kapcsolatfelvétel megtörtént a kliensnek valamilyen módon hitelesítenie kell magát. Amennyiben ez sikeres, csak abban az esetben szabad shellt adni az adott felhasználónak (vagy a távoli gépen a megfelelő parancsot futtatni). A hitelesítési módszerek után zárójelben látható, hogy melyik protokoll verzió esetében használhatók.

RhostsAuthentication (1):
Amennyiben az adott gép megtalálható a /etc/hosts.equiv vagy /etc/ssh/hosts.equiv fájlokból, illetve adott felhasználóként a .rhosts vagy a .shosts fájlokból, akkor jelszó megadás nélkül be lehet engedni.

RhostsRSAAuthentication (1):

HostbasedAuthentication(2):

Ugyanaz mint az előző, annyi a különbség, hogy ebben az esetben a kliens-nek rendelkezni kell a szerver RSA publikus kulcsával.

RSAAuthentication (1):

PubkeyAuthentication (2):

PasswordAuthentication (1,2):

A rendszerbeli felhasználónév és jelszó alapján történik meg a hitelesítés.

Az előzőekben felsorolt lehetőségek mellett van arra lehetőség, hogy Kerberos szerver felhasználásával történjen meg a hitelesítés.

10.1.3. Az SSH-hoz kapcsolódó fontosabb parancsok

/usr/sbin/sshd az SSH kiszolgáló
/usr/lib/openssh/sftp-server az sftp kiszolgálásáért felelős alrendszer
/etc/init.d/ssh a ssh indításáért felelős script
/usr/bin/ssh az SSH kliens program
/usr/bin/scp scp parancs a fájl átvitelre
/usr/bin/sftp titkosított ftp kapcsolat ssh felhasználásával
/usr/bin/ssh-keygen kulcspár létrehozása
10.1.4. Az SSH kiszolgáló néhány konfigurációs lehetősége

Az OpenSSH kiszolgáló a /etc/ssh/sshd_config fájl segítségével konfigurálható. A következőkben néhány fontosabb direktívát mutatok be:

Port 22
Melyik TCP porton „hallgatózzon”?

ListenAddress 172.31.0.1
Mely IP címen legyen elérhető. Amennyiben több interfészünk is van, akkor megadhatjuk, hogy melyeken történjen a port megnyitása. Több is szerepelhet belőle.

Protocol 2
Csak az SSH Protocol Version 2. legyen támogatva.

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
A telepített szerver privát kulcsait tartalmazó fájlok.

PermitRootLogin yes

AllowGroups oktato
AllowUsers user@host
DenyGroups hallgato
DenyUsers winokt
Bejelentkezés engedélyezése vagy tiltása csoport- vagy felhasználónév alapján.

RSAAuthentication yes
PubkeyAuthentication yes
PasswordAuthentication yes
RhostsRSAAuthentication no
HostbasedAuthentication no
Adott hitelesítési módszereket támogatása.

SyslogFacility AUTH
LogLevel INFO
A naplózás a /var/log/auth fájlba történjen INFO „naplózási szinttel”.

PermitEmptyPasswords no
Az üres jelszavak nem engedélyezettek.

MaxAuthTries 3
A hitelesítési próbálkozások száma.

StrictModes yes
Bejelentkezés előtt a saját könyvtár jogosultságainak az ellenőrzése.
Subsystem sftp /usr/lib/openssh/sftp-server
Az sftp alrendszer engedélyezése.

UsePAM yes
A PAM használatának engedélyezése.

10.1.5. Az SSH kliens használata
Linux operációs rendszeren az ssh parancs segítségével megtehetjük a távoli bejelentkezést illetve a port forward-ot. Az ssh kliens konfigurálása az alábbi fájlok segítségével történhet:

rendszer szinten: /etc/ssh/ssh_config
felhasználói szinten: ~/.ssh/config

 Példa konfigurációs fájlra:
Port 22
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
PasswordAuthentication yes
User user1
StrictHostKeyChecking yes

Alapértelmezésként az ssh parancs ugyanazzal a felhasználóval próbál meg távolra bejelentkezni, amellyel a helyi rendszerben jelen vagyunk. A User direktívával ezt definiálhatjuk felül. A StrictHostKeyChecking direktiva segítségével azt adhatjuk meg, hogy szigorúan ellenőrizze a ~/.ssh/known_hosts fájban a szerver publikus kulcsát. Ha az nem egyezik, akkor ne engedélyezze a hitelesítést.

Példák ssh parancs használataéra:
• ssh 192.168.31.1
 bejelentkezés az adott gépre az aktuális user-el
• ssh -l alma 192.168.31.1
• ssh alma@192.168.31.1
 bejelentkezés az adott gépre alma nevű felhasználóként
• ssh -i pr_rsa.key -p 1022 -l alma 192.168.31.1
 bejelentkezés az adott gépre alma nevű felhasználóként a pr_rsa.key RSA kulcs felhasználásával az 1022-es porton keresztül
• ssh -f -N -L 2222:192.168.31.1:80 alma@192.168.31.1 true
 a helyi 2222-es port forward-olása a távoli gép 80-as portjára az alma nevű felhasználóval
• dd if=/dev/sda1 | ssh -l root 192.168.31.1 'cat > sda1_save'
 egy partíció mentése ssh használatával egy távoli gépre
10.1.6. Fájlátvitel scp és sftp használatával

Az scp parancs általános szintaxisa:

scp [Options] [[user1@host1:]file1] [[user2@host2:]file2]

Példák scp parancs használatára:

• scp alma@192.168.31.1:a* .
 A távoli géphez alma nevű felhasználóval kapcsolódik és a felhasználó saját
 könyvtárából az a-val kezdődő fájlokat másolja át a helyi gép aktuális
 könyvtárába
• scp -pr 192.168.31.1:/var/www /var/.
 A távoli géphez a jelenlegi felhasználó azonosítóval kapcsolódik és onnét a /
 var/www könyvtár tartalmát másolja át a /var/www-ként a helyi gépre a
 fájl jellemzők megőrzésével
• scp -p *tgz 192.168.31.1:.
 Az aktuális könyvtárban lévő tgz-re végződő fájlokat másolja át a távoli
 gépre a jelenlegi felhasználói azonosítóval a felhasználó saját könyvtárába
• scp -p /var/www/index.htm root@192.168.31.1:/var/www/index.htm
 A /var/www/ -ben lévő index.htm nevű fájlt másolja át a távoli gépre
 ugyanilyen elérési úttal root-ként csatlakozva
• scp -p -P 2222 *.html root@192.168.31.1:/var/www/.
 Az aktuális könyvtárban lévő összes .html-re végződő fájlt másolja át a
 távoli gépre a /var/www könyvtárba root-ként csatlakozva a 2222-es tcp
 porton keresztül

Az sftp parancs használata hasonlít a hagyományos ftp parancshoz. Az scp-vel
ellentétben ez egy önálló parancsfelületet biztosít. A parancs felületen belül az
ftp kliensekben megszokott parancsokhoz hasonlóakat használhatunk.

Az sftp parancs használata:

sftp [Options] [[user@host[:dir[/]]]]

sftp alma@192.168.31.1
Connecting to 192.168.31.1...
alma@192.168.31.1's password:
sftp> ls

Miután sikeresen kapcsolódtunk a szerverhez, a kliens felületen belül a
legfontosabb lehetőségek:

• ?, help segítség kérés
• ls, lls listázás a távoli, helyi gépen
• pwd, lpwd aktuális könyvtár megtekintése a távoli, helyi gépen
• cd, lcd könyvtár váltás a távoli, helyi gépen
• get, put több fájl letöltése, feltöltése
• rm, rmdir távoli fájl, könyvtár törlése
• quit kilépés
Az OpenSSH segítségével lehetőség van távoli adminisztrációra illetve fájl átvitelre. Amennyiben csak rendszeradminisztrálásra használjuk korlátozzuk a szolgáltatás elérését IP cím alapján, illetve ne az alapértelmezett porton futtassuk. Amennyiben csak kulcspar alapján történő hitelesítést engedélyezzük úgy a távolról történő jelszó próbálókatoknak is gátat szabhatunk. De természetesen ebben az esetben is fennáll annak a veszélye, hogy valamilyen szoftver hibát kihasználva visszaéljenek a rendszerrel. Tehát használjuk körültekintően, nehogy másnak is ezáltal legyen lehetősége a rendszer feltörésére. Sokszor éppen a biztonságosnak hitt szolgáltatások jelentik a legnagyobb veszélyt.

Amennyiben ezen keresztül szeretnénk megvalósítani a fájl átvitelt, akkor ajánlott, hogy a normál felhasználók csak a saját könyvtárukat tudják elérni. Erre az 5.1-es verzió esetében ott van a ChrootDirectory konfigurációs lehetőség. Amennyiben az itt megadott könyvtár esetében létezik egy megfelelő minimális könyvtárstruktúra, akkor a felhasználók csak ezen könyvtár tartalmát tudják majd elérni. Az scponly csomag (parancs) felhasználásával megoldható, hogy csak scp elérés legyen, shellt ne kaphasson egy távoli felhasználó.

10.2. A Linux mint web szerver

10.2.1. Az Apache jellemzői

Az Apache webszerver legfontosabb jellemzői:
• Az utóbbi 10-12 év domináns webszervere. Népszerűségére jellemző, hogy folyamatosan 50-70%-át a webszervereknek az Apache tette ki.
• Jól bevált, jelentős hagyományai vannak.
• A web kiszolgálás TCP/IP-re épülő szolgáltatás. Alapértelmezésként a 80-as TCP portot használja a HTTP, a 443-as portot a HTTPS.
• Jelenleg három fő verziója van használatban: 1.3, 2.0, és a 2.2-es.
• Nyílt forrású, a legtöbb Linux disztribúcióban benne van.
• Kis erőforrás igényű, egy manapság elavultnak tekinthető Pentium II kategóriájú számítógép megfelelő lehet a webszerver feladatra. (Ez természetesen függ a felhasználói számától és az alkalmazás számításigényétől.)
• Az Apache sokoldalúan konfigurálható, rengeteg konfigurációs beállítással
rendelkezik.

• A webszerver felépítése moduláris. Amikor forráskódból fordítjuk a webszervert választhatunk, hogy milyen modulokat (támogatásokat) szeretnénk statikusan belefordítni a webszerver programba (httpd), illetve melyeket dinamikusan betöltethető modulként. Ez utóbbi igény szerint a webszerver indulásakor betöltethető és használható.

• A különböző script nyelveket maximálisan támogatja: Perl, PHP, Python, ... Ezen programozási nyelvek segítségével megvalósítható a dinamikus weboldal létrehozása, adatbázis alapú webes rendszerek létrehozása.

• Képesek vagyunk SSI (Server Side Include) használatára. Ennek a segítségével például mindegyik web oldalunkhoz tartalmába adott fájlok tartalmát be tudjuk illeszteni.

• Képesek vagyunk külső programokat a CGI (Common Gateway Interface)-n keresztül végrehajtani.

• Van lehetőség a Virtualhost használatára. Ami annyit jelent, hogy egy program képes ellátni több szerver kiszolgálását. Vagyis például ugyanaz az Apache szolgálja ki a mondjuk a www.a.hu és a www.b.hu szervereket.

• Sokféle operációs rendszert támogat, elsősorban Linux vagy Unix operációs rendszerben használatos.

Az Apache verziók legfontosabb jellemzői.

1.3-as verziók (a jegyzet írásakor az 1.3.42-es a legújabb)
• kizárólagosan process alapú működés
• több független gyermekfolyamat révén valósul meg a webkiszolgálás
• alapból nem tartalmaz SSL (Secure Socket Layer) támogatást

2.0-as verziók (a jegyzet írásakor az 2.0.63-as a legújabb)

2.2-es verziók (a jegyzet írásakor az 2.2.15-ös a legújabb)
• APR (Apache Portable Runtime): általános API és lib-ek az alkalmazások számára
• különböző MPM-ek (Multi Processing Modules) használata. A hagyományos process alapú modell mellett különböző szál alapú modellek használata (pl.: worker) használatára is van lehetőségünk.
• a 2GB-nál nagyobb fájlok támogatása (csak a 2.2-ben)
• alapból tartalmaz SSL támogatást (mod_ssl)
• többféle protokoll támogatása a HTTP mellett
• speciális szűrő (filter) modulok használata a kimenet vizsgálatára

10.2.2. Az Apache telepítése forráskódból

A továbbiakba a 2.2-es ággal fogok foglalkozni. Az Apache 2.2.9 benne van a disztribúcióban és csomagból is telepíthető. Az oktatás során a saját program fordítást és telepítést az Apache segítségével szoktam bemutatni évek óta. Így a jegyzetben is először ezzel a módszerrel fogom bemutatni a webszerver telepítését.

Ahhoz, hogy Apache-ot tudjunk fordítani, abban az esetben a kernel fordításhoz hasonlóan rendelkeznünk kell bizonyos csomagokkal. Amire biztosan szükségünk lesz az a libc6-dev, gcc és make nevű csomagok. Ezen felül a beállított
támogatások függvényében még szükségünk lehet néhány csomag telepítésére (pl.: zlib1g-dev, libssl-dev).

Miután az Apache forráskódját letöltöttük és kicsomagoltuk, első lépésként a ./configure scriptet kell futtatnunk. Ennek a segítségével beállíthatjuk, hogy a program mely összetevőire van szükségünk.

Miután beléptünk a forráskódot tartalmazó könyvtárba, ./configure --help | less parancs segítségével tekinthetjük át a konfigurálás különböző lehetőségeit.

Példa egy „./configure” parancsra:
./configure --prefix=/usr/local/httpd-2.2.15
--enable-modules=all
--enable-mods-shared=all
--enable-so
--enable-cache
--enable-cgi
--enable-ssl
--with-ssl=/usr/include
--with-mpm=worker

Ebben a példában úgy konfigurálom a fordítót, hogy a /usr/local/httpd-2.2.15-ös könyvtárba kerüljenek majd a program különböző részei. Az összes modult engedélyezem, és mindegyiket dinamikusan. Ezen kívül engedélyezem, hogy legyen dinamikusan modul betöltés, az oldalak gyorsító tárba helyezését, a CGI végrehajtást és az SSL bővítményt. Ebben az esetben a worker MPM-et fogja használni a létrejött szerver.

Ahhoz, hogy az előző parancs sikeresen lefusson, ahhoz szükséges:
• zlib1g-dev csomag telepítése mod_deflate miatt.
• libssl-dev csomag telepítése mod_ssl miatt.

Miután a forráskód konfigurációja sikeresen lefutott, következhet az alkalmazáshoz tartozó binárisok, lib-ek és egyéb fájlok fordítása.
make [-j2]

Majd az elkészült fájlok telepítése a célhelyre (/usr/local/httpd-2.2.15). Alapértelmezésként a /usr/local/apache2 könyvtár a használatos. Amennyiben verzió frissítést végzünk, akkor ajánlatos, hogy a /usr/local/apache2 szimbolikus link legyen, amely a használt verzióknak megfelelő könyvtárba mutat. Így a konfigurálást is tudjuk verziótól függetlenül végezni, amely megkönnyíti a verziófrissítést.
maj install

10.2.3. Az Apache könyvtárai és parancsai
A telepítést követően a következő könyvtárak és fájlok jönnek létre a célhelyen:
• bin az Apache-hoz tartozó binárisok
 • ab Apache benchmark
 • apachectl az Apache indítása, leállítása, újraindítása
• apxs APache eXtenSion tool, bővítmények fordítása, telepítése
• dbmmanage DBM adatbázisban tárolt felhasználók kezelése, amely HTTP Basic hitelesítéshez használható
• htdbm DBM adatbázisban tárolt felhasználók létrehozás, amely HTTP Basic hitelesítéshez használható
• htdigest szövegfájlból tárolt felhasználók kezelése a HTTP Digest hitelesítéshez
• htpasswd szövegfájlból tárolt felhasználók kezelése a HTTP Basic hitelesítéshez
• httpd az kiszolgáló démon
• httxt2dbm hitelesítési információk szövegfájlból és DBM-be való átalakítása
• logresolve névfeloldás naplófájlból lévő IP címek alapján
• rotatelogs a naplófájlok „forgatása” idő vagy méret alapján
• build a fordítási folyamat során használt szkriptek és makrók
• cgi-bin a CGI-k alapértelmezett helye, ezen könyvtár tartalma érhető el a http://host/cgi-bin hivatkozás segítségével. Ahol a host az adott gép FQDN-je vagy IP címe.
• conf konfigurációs fájlok
 • httpd.conf webszerver fő konfigurációs fájlja
 • mime.types az egyes MIME típusok összerendezése az egyes fájl kiterjesztéseikkal
• error az egyes HTTP hibák esetén megjelenítendő fájlok
• htdocs a webes dokumentumok helye. Amilyen fájlokat ebbe a könyvtárba rakunk, azok lesznek elérhetők weben keresztül. Ez a könyvtár a jelenti a webes dokumentumok gyökerét.
• icons ikonok (pl.: listázáshoz)
• include header fájlok
• lib lib-ek
• logs naplófájlok
 • access.log a hozzáférések naplózása
 • error.log a hibák naplózása
• man parancskohoz tartozó man oldalak
• manual Apache dokumentáció
• modules az elérhető dinamikus modulok

Amennyiben nem forráskódból telepítjük az Apache-ot, abban az eseteben az előzőekben felsorolt könyvtárak és fájlok más helyen találhatók.

Például:

 konfigurációs fájlok: /etc/apache2
 web-es dokumentumok helye: /var/www
 CGI-k helye: /usr/lib/cgi-bin

Természetesen a konfiguráció ugyanazon direktívával segítségével történhet, csak más helyen tudunk a program működésébe beavatkozni.
10.2.4. Az Apache néhány konfigurációs direktívája

Az Apache esetében konfigurálás szempontjából a fő konfigurációs fájl mellett egyéb konfigurációs fájlokat is használhatunk. Az include direktiva segítségével tetszőleges nevű külső konfigurációs fájl felhasználhatunk a szerver működésekor.

Amikor egy szervert konfigurálunk megkülönböztethetünk:

- globális konfigurációt: a globális konfigurációs fájl felhasználásával tetszőleges direktívát megadhatunk. Hátránya, hogy bármilyen módosítások a szerverrel újra kell olvastatni a konfigurációs fájlt.
- helyi konfigurációt (Alapértelmezésként .htaccess néven). Ebben a fájlból adott könyvtárra vonatkozó helyi beállításokat adhatunk meg. Aminek a módosítását előzetesen engedélyeztük (AllowOverride), annak a felülvizsgálatát tehetjük meg helyileg.

A globális konfiguráció esetében léteznek ún, blokk direktívák. Ezek segítségével bizonyos szempont alapján csoporthosszíthathatjuk a direktívákat, adott feltétel vagy valamilyen fájl jellemző alapján.

A konfigurálás során használható fontosabb blokk direktívák:

- `<IfDefine SSL> ... </IfDefine>` a webszerver indításakor a -D kapcsoló után definiált érték figyelembe vétele
- `<IfModule module> ... </IfModule>` adott dinamikus modul létezésekor alkalmazandó beállítások
- `<VirtualHost ip_address:port> ... </VirtualHost>` adott „virtuális hoszt-ra” vonatkozó beállítások
- `<Directory path> ... </Directory>` adott könyvtárra alkalmazandó beállítások elérési útvonal alapján
- `<DirectoryMatch regexp> ... </DirectoryMatch>` adott könyvtárра alkalmazandó beállítások reguláris kifejezés alapján
- `<Files filename> ... </Files>` adott fájl(ok)-ra vonatkozó beállítások fájlnev alapján (shell minta használható a fájlnevben)
- `<FilesMatch regexp> ... </FilesMatch>` adott fájl(ok)-ra vonatkozó beállítások reguláris kifejezés alapján
- `<Location URL> ... </Location>` adott URL-re vonatkozó beállítások név alapján (shell minta használható a névben)
- `<LocationMatch regexp> ... </LocationMatch>` adott URL-re vonatkozó beállítások reguláris kifejezés alapján
- `<Limit method> ... </Limit>` adott HTTP metódus(ok)ra vonatkozó beállítások név alapján
- `<LimitExcept method> ... </LimitExcept>` adott HTTP metódus(ok)ra nem vonatkozó beállítások név alapján

ServerRoot /usr/local/apache2
Az Apache telepítésének a helyét adja meg. A különböző konfigurációs fájlok
helyét relatívan is megadhatjuk, amely esetében az itt definiált könyvtár lesz az alapértelmezés.

ServerType standalone # vagy inetd
A webszerver futtatása önállóan vagy az inetd felhasználásával történjen.

ServerName www.apache_host.hu
Itt adhatjuk meg, hogy a szervert milyen név vagy IP cím segítségével érheszük el.

Listen 80
A 80-as TCP porton hallgatózzon a webszerver.

User www-data
Group www-data
A webszerver milyen felhasználó és milyen felhasználói csoport nevében működjön. Ahhoz, hogy a webszerver képes legyen dokumentumokat kiszolgálni, fontos, hogy legyen olvasási jogosultsága az adott fájlokra vonatkozóan. Ellenkező esetben nem lesz képes a fájlok elküldésére.

DocumentRoot /var/www/htdocs
Egy webszerver segítségével általában nem szeretnénk az összes fájlunkat elérhetővé tenni. Elég az, hogy csak bizonyos könyvtáron belüli fájlokat tesszük elérhetővé HTTP-n keresztül.

ServerAdmin webmaster@www.apache_host.hu
A webszerver karbantartásáért felelős személy vagy csoport e-mail címe.

LoadModule dir_module modules/mod_dir.so
LoadModule php5_module modules/libphp5.so
Dinamikus modul betöltése a szerver indításakor. Miután egy modul betöltésre került, akkor az általa nyújtott lehetőségek és bizonyos direktívák elérhetőek lesznek.

Timeout 300
Egy felépült kapcsolat időkorlátja.

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15
Több kapcsolat engedélyezése adott IP címről és az erre vonatkozó maximális kapcsolatszám és időkorlát.

LogLevel warn
A naplózás szintjének megadása. A lehetséges értékek, amelyek esetében balról jobbra haladva egyre csökken a naplózott események száma: debug, info, notice, warn, error, crit, alert, emerg.

ErrorLog logs/error.log
Amennyiben olyan kérés érkezik a webszerverhez, amelyet valamilyen probléma miatt nem tud kiszolgálni, akkor ide bejegyzi a kérést és az arra vonatkozó fontosabb információkat.
LogFormat "%h %l %u %t "%r" %>s %b" common
CustomLog logs/access.log common
Az elérések naplózásának formátuma és a naplófájl megadása. A %h jelenti például a távoli gép IP címét, a %t kérés idejét.

ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var
Az egyes HTTP hibákhoz fájlokat társíthatunk, amely segítségével tetszőleges tartalmat megjeleníthetünk a hibák függvényében.

DefaultType text/plain
AddDefaultCharset UTF-8
Alapértelmezett MIME típus és karakter készlet.

ServerTokens Prod
A webszerver verziójának rejtése, csak az Apache név mutatása.

TraceEnable off
A HTTP TRACE metódusának tiltása.

ServerSignature Off
A szerver által generált listák alján szereplő sor kikapcsolása.

UserDir public_html
Felhasználóként a saját webtartalom elhelyezésének könyvtára a „HOME” könyvtáron belül. Amennyiben ez engedélyezett, akkor például a „tux” nevű felhasználó saját oldalai a http://www.apache_host.hu/~tux címen lesznek elérhetőek.

DirectoryIndex index.html index.shtml index.php
Amennyiben egy könyvtár esetében létezik az itt megadott nevű fájlok valamelyike, akkor olyan HTTP kérések esetében, amelyek könyvtár hivatkozással végződnek ezen fájlok lesznek automatikusan elküldve balról jobbra történő prioritással.

AccessFileName .htaccess
Megadja annak a fájlynak a nevét, amely segítségével helyi beállítások tehetők adott könyvtárakra vonatkozóan.

Hozzáférési beállítások
A webszerver esetében fontos, hogy milyen módon lehessen előrni bizonyos fájlokat vagy könyvtárakat. Szükség lehet például olyanra, hogy egy adott könyvtár esetében, ahol nem létezik a „DirectoryIndex”-nek megfelelő fájl, ott ne listázza ki automatikusan a könyvtár tartalmát.

A korábban ismertetett blokk direktívák közül ily módon használhatjuk a Directory, DirectoryMatch, Files, FilesMatch, Location, LocationMatch direktívákat.
Ebben az esetben a következő fontosabb lehetőségeink vannak a „jogosultságok” korlátozására:

- **Options** Az alábbi opciók közül választhatunk, amelyek a direktíva után írhatók:
 - None Semmilyen opció nincs bekapcsolva
 - All Az összes opció be van kapcsolva
 - ExecCGI CGI végrehajtás engedélyezése
 - FollowSymLinks szimbolikus linkek követése (mutathat a DocumentRoot-on kívülre is)
 - SymlinksIfOwnerMatch szimbolikus linkek követése csak akkor, hogyha ugyanaz a link és a link céljának tulajdonosa
 - Includes SSI engedélyezése
 - Indexes könyvtár tartalom listázásának engedélyezése

Az egyes opciók öröklődnek. Vagyis, ha adott szinten beállítjuk őket, akkor az az alkönyvtárakra is érvényes lesz. Amennyiben az Options után egyszerűen felsorolunk értékeket, úgy csak a felsorolt opciók lesznek bekapcsolva. Van arra is lehetőség, hogy a korábbi öröklődő beállításokhoz adjunk új opciót hozzá, vagy vegyünk el belőle. Ezt úgy tehetjük meg, hogy az adott opció neve elé vagy – jelet írunk.

- **AllowOverride** Azt határozza meg, hogy a .htaccess fájlokban milyen globális beállításokat definiálhassunk felül. Az alábbi lehetőségek közül választhatunk, amelyek a direktíva után írhatók:
 - None, All semmit, mindent
 - AuthConfig hitelesítésra vonatkozó beállításokat
 - FileInfo dokumentum típusal kapcsolatos beállításokat
 - Indexes könyvtár listázásának formátumát
 - Limit hozzáférések engedélyezését és megtagadását
 - Options az előzőekben szereplő opciók közül melyeket

A hozzáférések engedélyezéséhez kapcsolódik az Order, Allow és Deny direktíva.

Order allow, deny
Order deny, allow

A hozzáférés vezérlő beállítások érvényességének sorrendje.

Allow from host_list
Deny from host_list

Az elérés engedélyezése, tiltása adott IP címekről vagy hosztokról

Egyszerű példa opciók és jogosultságok beállítására:

```
<Directory "/usr/local/apache2/manual"
  Options Indexes
  AllowOverride None
  Order allow,deny
  Allow from localhost
  Deny from localhost
</Directory>
```
Alias-ok, átírányítások
Arra is van lehetőségünk, hogy a DocumentRoot-on kívüli fájlokat és könyvtárait elérhetővé tegyünk. Erre szolgálnak az ún. Alias-ok.

Alias /icons /usr/share/apache2/icons
Ebben az esetben például a http://www.apache_host.hu/icons/test.png hivatkozás estében a test.png fájlt a /usr/share/apache2/icons könyvtárból próbálja meg elérni.

AliasMatch ^/icons(.*) /usr/share/apache2/icons$1
Annyiban különbözik az Alias-tól, hogy ebben az esetben reguláris kifejezés segítségével adhatjuk meg, hogy milyen hivatkozások esetében akarjuk a fájlokat máshonnét venni.

Redirect /inf http://inf.duf.hu
Amennyiben az első paraméterként megadott hivatkozással kezdődik az URL-ben lévő PATH, akkor a kérést át kell irányíttani a második paraméterként megadott helyre.

RedirectMatch (.*\.jpg)$ http://inf.duf.hu$1
A RedirectMatch esetében szabályos kifejezés segítségével adhatjuk meg, hogy milyen fájlok esetében történjen meg az átírányítás.

ScriptAlias /cgi-bin /usr/local/apache2/cgi-bin
Ugyanúgy viselkedik, mint az Alias, csak ebben az esetben az adott könyvtár CGI scripteket tartalmaz.

ScriptAliasMatch ^/cgi-bin(.*) /usr/local/apache2/cgi-bin$1
Reguláris kifejezés alapján is megtehetjük a CGI scriptek helyének a meghatározását.

CGI szkriptek végrehajtásához szükséges beállítások:
Ahhoz, hogy adott parancsfájlokat CGI-ként tudjunk végrehajtani több beállítás is szükséges. Erre mutat példát a következő konfigurációs fájl részlet:

AddHandler cgi-script .cgi .pl
ScriptAlias /cgi-bin /usr/local/apache2/cgi-bin
<Directory "/usr/local/apache2/cgi-bin”>
 Options +ExecCGI
 Order allow,deny
 Allow from all
</Directory>

Egy fájl, amit CGI-ként szeretnénk futtatni fontsos, hogy rendelkezzen végrehajtási jogosultsággal, és megfelelő HTTP fejlécet generáljon. A webszerver
csakis ebben az esetben tudja lefuttatni, és elküldeni a böngészőnek a parancs kimenetét.

A PHP szkriptek futtatásához szükséges beállítások:
Manapság a dinamikus web tartalom kiszolgálásához gyakori a PHP használata. Amennyiben a PHP-t dinamikus modulként szeretnénk használni, abban az esetben telepítenünk kell vagy csomagból (libapache2-mod-php5), vagy forráskódóból. Mutatnának a telepítést elvégeztük, be kell állítanunk, hogy az Apache bizonyos fájlok esetében a PHP értelmezőt felhasználva adja vissza a kimenetet.

```bash
LoadModule php5_module modules/libphp5.so
AddType application/x-httpd-php .php .php5
AddType application/x-http-source .phps
```

A php5 modul betöltése mellett társítanunk kell az értelmezőhöz kiterjesztéseket. Ebben a példában azt láthatjuk, hogyha az Apache olyan hivatkozást kap, amely .php-re vagy .php5-re végződik, akkor nem egyszerűen visszaküldi a fájlt, hanem átadjá a beépülő PHP modulnak, amely a benne lévő kódot lefuttatja és ennek a kimenetét fogja a Webszerver visszaadni. A beépülő modul mellett egy PHP nyelven megírt script is futtatható CGI-ként.

Az Apache 2.2 fontosabb moduljai:
Az webszerver működéséhez kapcsolódó részfeladatok modulok végzik el. Vagyis ezek együttes működése révén valósul meg a web kiszolgálás. Mindegyik konfigurációs direktívához tartozik egy modul, amelyben annak a direktívának az értelmezése történik. Amennyiben konfigurációs hibával találkozunk, akkor a következőket célszerű ellenőrizni:

- a direktiva nevét és/vagy paraméterét megfelelően adtuk-e meg
- a direktiva működéséhez szükséges modul be lett-e töltve
- a megfelelő helyen (kontextusban) akarjuk-e használni a direktívát

Néhány modul, a hozzá tartozó funkcióval:

- **mod_alias.so** Alias-ok és átírányítások kezelése
- **mod_auth[n]_*.so** hitelesítéshez kötődő modulok
- **mod_authz_*.so** „Feljogosításhoz” kötődő modulok
- **mod_autoindex.so** Könyvtár tartalmának listázása
- **mod_cache.so** Cache az URL alapján indexelve
- **mod_cgi.so** CGI végrehajtás
- **mod_dav.so** WebDAV protokoll kezelése
- **mod_headers.so** HTTP kérés és válasz fejlécek
- **mod_include.so** SSI kezelése
- **mod ldap.so** LDAP kapcsolat
- **mod_mime.so** MIME típusok kezelése
- **mod_proxy.so** HTTP 1.1 proxy/átjáró
- **mod_rewrite.so** URL manipuláció
- **mod_so.so** Dinamikus modul betöltés
- **mod_ssl.so** HTTPS támogatás
- **mod_status.so** A szerver állapot figyelés
- **mod_suexec.so** „Setuid wrapper” a CGI scriptekhez

102
Az itt felsorolt modulok mellett számos extra modul is elérhető külső forrásból (third party modules). Ezekkel a webszerver extra működésre képes, más programozási nyelven írt kódokat is értelmezni képes. pl.: mod_python.so a Python scriptek értelmezéséhez, mod_mono.so ASP.NET oldalak, mod_security.so az Apache biztonságának megerősítése, mod_jk.so az Tomcat Java Servlet Container-rel való kapcsolat.

Az Apache indítása és leállítása (apachectl):

Az apachectl parancs fontosabb kapcsolói és paraméterei:
- `-f` a szerver konfigurációs fájl megadása
- `-t` a konfiguráció tesztelése
- `-k`
 - `start` indítás
 - `stop` leállítás
 - `restart` újraindítás
 - `graceful` újraindítása a meglévő kapcsolatok bezárás nélkül
 - `status`, `fullstatus` a webszerver állapotának lekérdezése
- `-D string` direktíva létrehozása, aminek a létezése a későbbiekben az IfDefine segítségével megvizsgálható

Példák apachectl használatára:
```bash
apachectl start
# ha nincs egyéb opció, akkor a -k elhagyható
apachectl -DSSL start
# indítás SSL támogatással
apachectl -k graceful
# újraindítása konfigurációs fájlok újra olvasásával (reload)
```

Virtualhost-ok használata

Az Apache támogatja a név alapú és az IP alapú virtualhost-ok használatát. Az első esetben a gép egy IP címmel rendelkezik és a HTTP fejléc Host mezőjé alapján történik a kérés intézése a megfelelő virtuális géphez. Az IP alapú virtualhost-ok esetében az egyes virtuális gépek különböző IP címet kapnak.

Példa virtuális hosztok használatára külön naplózással:
```xml
<VirtualHost tom.a106.duf.hu>
  DocumentRoot "/var/www/tom/htdocs"
  ServerName tom.a106.duf.hu
  ServerAdmin webmaster@a106.duf.hu
  ErrorLog /var/www/tom/logs/error_log
  TransferLog /var/www/tom/logs/access_log
  ScriptAlias /cgi-bin/ /var/www/tom/cgi-bin/
</VirtualHost>
```
10.2.5. A Debian csomagban elérhető Apache 2.2 telepítése

Amennyiben nem szeretnénk forráskódból fordítani, akkor bináris csomagokból is telepíthetjük az Apache 2.2-es verzióját. Különböző MPM-ek támogatásával fordított csomagok érhetők el. Például:

- apache2-mpm-prefork hagyományos process alapú
- apache2-mpm-worker szál alapú modell

Az apache2.2-common csomagban találhatók azok a részei a webservereknek, amelyek mindegyik MPM esetében megegyeznek. A csomagok telepítésekor a adminisztrációs parancsok a /usr/sbin-be, a webszerver moduljai pedig a /usr/lib/apache2/modules könyvtárba kerülnek. A /etc/init.d/apache2 szkript, vagy az apache2ctl parancs segítségével megoldható a szolgáltatás indítása és leállítása.

Az Apache 2.2-höz tartozó konfigurációs fájlokat tartalmazó könyvtár a /etc/apache2. Itt a telepítést követően az alábbiakat találjuk:

- conf.d konfigurációs könyvtár, elsősorban Apache-ot használó alkalmazások konfigurációi számára
- mods-available az elérhető modulokhoz .conf és .load fájl, ezekkel lehetséges adott modult betölteni, és a hozzá kapcsolódó konfigurációt megadni
- mods-enabled szimbolikus linkeket tartalmaz, amelyek a mods-available könyvtárban lévő fájlokra mutatnak. Az itt megadott modulok kerülnek betöltésre a web szerver indításakor.
- sites-available az elérhető virtuális hosztok konfigurációs fájljai
- sites-enabled szimbolikus linkeket tartalmaz, amelyek a sites-available könyvtárban lévő fájlokra mutatnak. Az itt megadott virtuális hosztok lesznek engedélyezve a web szerver indításakor.
- apache2.conf A fő konfigurációs fájl, néhány általános beállítást tartalmaz, és ennek a segítségével történik a korábbiakban ismertetett könyvtárak „include”-ja.
- ports.conf Az Apache által használt portok beállítása

A Debian fejlesztők az előzőekben felvázolt struktúra kezelésének egyszerűsítésére fejlesztették ki az alábbi parancsokat:

- a2ensite virtuális hoszt engedélyezése
- a2dissite virtuális hoszt tiltása
- a2enmod modul betöltése
- a2dismod modul tiltása

A parancsok esetében egy site vagy modul nevet adhatunk meg paraméterként. Amennyiben paraméterek nélkül használjuk a parancsokat, akkor megmutatja a
rendelkezésre álló modulok vagy site-ok listáját, és a listát megtekintve beírhatjuk, hogy melyik esetében akarjuk a kért műveletet elvégezni. A parancsok kiadását követően újra kell tölteni az Apache konfigurációs fájljai és moduljait (/etc/init.d/apache2 force-reload).

Debian csomagban jönéhány third-party apache modul is elérhető. Ezek a libapache2-mod-al kezdődő csomagokban vannak. Amennyiben PHP5-t is szeretnénk használni, akkor telepítenünk kell a libapache2-mod-php5 csomagot, és a használni kívánt PHP bővítményeket (pl.: php5-gd, php5-mysql, ...). A csomagok úgy letetek elkészítve, hogy a telepítést követően használhatók az alapértelmezett beállításoknak megfelelően.

10.3. FTP szerver használata Debian GNU/Linux operációs rendszerben

10.3.1. Az FTP protokoll fontosabb jellemzői

Azt FTP összetett protokoll. A működéséhez kettő TCP adatfolyamot használ. Ezek a portok tradicionálisan:

- 21-es TCP port: ftp command (ftp parancs csatorna)
- 20-as TCP port: ftp data (ftp adat csatorna)

A parancs csatornán keresztül történik a felhasználók hitelesítése és egyes parancsok küldése. Egy másik TCP kapcsolat pedig az adatok továbbítására való. Amellett, hogy az FTP kettő adatfolyamot használ, kétfajta működési módja is létezik, az aktív illetve a passzív mód.

Az aktív mód működése:

- A kliens kapcsolódik a szerver 21-es TCP portjához egy N > 1024 szabad TCP port felhasználásával
- A kliens megnyitja (listening) az N+1-es szabad TCP portot , és a PORT N+1 üzenetet elküldi a szervernek. Innét tudja a szerver, hogy neki melyik porthoz kell majd kapcsolódnia.
- A szerver ezután a 20-as TCP portjáról kapcsolódik a kliens által megyitott portra

Ebben az esetben tehát egy a szerver felé irányuló, illetve egy a kliens felé irányuló TCP kapcsolat épül fel.

Passzív mód esetében a működés a következő:

- A kliens kapcsolódik a szerver 21-es TCP portjához egy N > 1024 szabad TCP port felhasználásával
- A kliens a PORT parancs helyett a PASV parancsot használja, amire a szerver megnyit egy random portot (P >1024), és ezt visszaküldi a kliensnek (PORT P)

105
A kliens ezután N+1-es szabad TCP porton keresztül kezdeményezi az adatkapcsolatot a szerver megnyitott távoli P TCP portjával. Ebben az esetben tehát kettő, a szerver felé irányuló TCP kapcsolat épül fel.

Amennyiben a kliens oldalt tűzfal védi, akkor az valószínűleg nem engedélyezi a bejövő TCP kapcsolatokat. Ebben az esetben az aktív mód nem fog működni, csak a passzív mód. Amikor azonban egy belső hálózatban vagyunk az FTP szerverrel, abban az esetben használhatjuk az aktív módot.

A tűzfalak esetében külön problémát jelent, hogy képesek-e felismerni, hogy FTP protokollról van szó, és ennek megfelelően eldönten, hogy a kapcsolat jöhet-e befelé. A Linux kernel szintű tűzfala esetében létezik a Connection tracking támogatás FTP protokollra is. Ezzel megvizsgálható, hogy az adatkapcsolat valóban egy létező FTP session-höz tartozik-e.

Az FTP esetében létezik ún. Anonymous FTP, amely esetében bárki névtelenül töltethet le fájlokat a szerverről, illetve a felhasználónévhez és jelszóhoz kötött. Az Anonymous FTP esetében általában nincsen feltöltési lehetőség, míg a másik esetében általában van feltöltési lehetőség is. Az adott szerver konfigurálásakor beállítható, hogy milyen lehetőségei legyenek adott felhasználóknak.

10.3.2. A ProFTPD (Professional File Transfer Protocol Daemon) jellemzői

- Sokoldalúan konfigurálható és biztonságos FTP kiszolgáló, jelentős felhasználói táborral.
- Egy fő konfigurációs fájl (/etc/proftpd/proftpd.conf) és egy modulok betöltéséhez (/etc/proftpd/proftpd.conf).
- A fő konfigurációs fájl mellett lehetséges helyi beállításokat megadni a .ftaccess fájlok segítségével. (Apache esetében .htaccess volt.)
- Akár konfigurációs fájl nélkül is képes működni.
- Képes önállóan (standalone) módon és inetd/xinetd felhasználásával is működni.
- Standalone módban nem privilégizált felhasználóként fut.
- A ProFTPD nem hajt végre egyetlen külső alkalmazást sem.
- Megoldhat a fájlok és könyvtárak rejtése felhasználónév vagy csoportnév vagy jogosultságok alapján.
- Moduláris felépítésű, könnyen kiterjeszthető az alapértelmezett működése (MySQL, LDAP, SSL, ...).
- Naplózása kompatibilis a wu-ftpd-vel, rendelkezik utmp/wtmp támogatással.
- Több virtuális szerver és anonymous FTP használatának lehetősége.
- Képes a felhasználókat „chroot”-olni, ezáltal minden felhasználó csak a saját könyvtára tartalmát látja, nem tud a könyvtárhierarchiában felfelé
lépkedni.
• IPv6 támogatással is rendelkezik.
• Nyílt forrássú (GNU GPL licence), nemcsak Linux alatt létezik működő verziója.

Az előző felsorolásból láthatjuk, hogy a ProFTPD sok képességgel rendelkezik. A következő alfejezetben a konfigurációs lehetőségek közül fogok néhányak kiemelni.

10.3.3. A ProFTPD néhány konfigurációs direktívája

Az Apache-hoz hasonlóan itt is léteznek különböző kontextusok. Egy direktíva érvényességét tehát meghatározza az, hogy milyen helyen lett kiadva. A ProFTPD esetében a lehetőségek:

• `/etc/proftpd/proftpd.conf` fő konfigurációs fájl
• `.ftpaccess` helyi beállítások

A fő konfigurációs fájlon belül használhatunk különböző blokk direktivákat:

• külön megadás nélkül a fő szerverre vonatkozó beállítások
• `<Global> ...</Global>` az összes virtuális hosztra vonatkozó beállítások. Ezek igény szerint helyileg felüldefiniálhatók.
• `<Virtualhost>...</Virtualhost>` adott virtuális hosztra vonatkozó beállítások
• `<Anonymous rootdir>...</Anonymous>` anonymous ftp elérésre vonatkozó beállítások a gyökérkönyvtár megadásával
• `<Directory dir>...</Directory>` adott könyvtárra vonatkozó beállítások
• `<Limit cmds>...</Limit>` egyes FTP parancsok (cmds) korlátozása

Az egyes blokk direktívák egymásba ágyazhatók. Az előző felsorolás a beágyazást is bemutatja. Vagyis egy adott blokk direktivája a nála korábban szereplőkön belül használható.

Néhány általános beállítás a FTP szerverre vonatkozóan:

ServerName "ProFTPD – Debian"
A szerver nevének a megadása.

ServerType standalone
A szerver működési módjának a megadása. Ebben a példában önállóan működik.

Bind 192.168.30.2
Az IP cím, amelyen keresztül el tudjuk érni a szervert.

Port 21
A TCP port, amelyet a szerver figyel.

PassivePorts 49152 65534
Passzív mód esetében melyik TCP portot nyissa meg a szerver.

User proftpd
Group nogroup
A felhasználó, felhasználói csoport akinek a nevében a szerver végrehajtó dik.
DefaultRoot ~ users
Az users nevű csoport tagjai csak a saját könyvtárukat érhetik el. Célszerű
beállítani, hogy ne lehessen tetszőleges rendszerbeállítást elérni.

DefaultServer on
Amennyiben több virtuális szerverünk is van, megadhatjuk, hogy melyik legyen
az alapértelmezett.

DisplayLogin welcome.msg
DisplayQuit quit.msg
DisplayFirstChdir .message
Üzenetek megjelenítése bejelentkezéskor, kilépéskor és az első könyvtár
váltáskor.

ShowSymlinks on
Mutassa-e a szimbolikus linkeket, mint önálló fájltípust?

ListOptions "-lt"
A könyvtár listázások alkalmával használandó listázási opciónk.

MaxLoginAttempts 3
A bejelentkezési kísérletek száma.

TimeoutNoTransfer 600
TimeoutStalled 600
TimeoutIdle 1200
Az időtúllépés beállítása, hogyha nincs átvitel, megállt az adatátvitel, nem
történik semmi.

MaxInstances 30
MaxClients 100
MaxClientsPerHost 4
MaxClientsPerUser 3
A gyermekfolyamatok és a kliens maximális száma egyidejűleg. Lehetséges
hosztonként és felhasználóként is korlátozni a kapcsolatok maximális számát.

AuthUserFile /home/ftpusers
AuthGroupFile /home/ftpgroups
A ProFTPD képes arra, hogy a felhasználók adatait ne a rendszer felhasználói
adatbázisából kérdezze le, hanem saját fájlokat használjon erre a célra.

Include /etc/proftpd/ldap.conf
Külső saját konfigurációs fájl betöltése.

Az FTP-n keresztüli jogosultságok beállítása
Az FTP protokoll sok parancsot definiál. Ezek közül választhatunk, hogy melyeket
szeretnénk engedélyezni, illetve melyeket nem.
Néhány FTP protokollon belüli utasítás a teljesség igénye nélkül:
• CWD (Change Working Directory) könyvtár váltás
• MKD / XMKD (MaKe Directory) könyvtár létrehozás
Azért, hogy a jogosultság megadáskor ne kelljen többet ezek közül felsorolni adott esetben, ezért definiáltak jogosultsági szinteket. Ezekhez egyszerre több „elemi utasítás” tartozik.

- **READ**: fájl olvasáshoz kötődő utasítások
- **WRITE**: létrehozáshoz, törléshez, átnevezéshez kötődő utasítások
- **DIRS**: könyvtár váltáshoz, listázáshoz kötődő utasítások
- **LOGIN**: a bejelentkezéshez kötődő utasítások
- **RNFR (ReName From)**: átnevezni valamiről
- **RNTO (ReName To)**: átnevezni valamire
- **DELE (DELETE)**: fájl törlése
- **RMD / XRMD (ReMove Directory)**: könyvtár törlése
- **RETR (RETRieve)**: letöltés
- **STOR (STORE)**: feltöltés

A <Limit> blokkon belül adhatjuk meg az adott parancsokra vagy jogosultságokra vonatkozó „korlátozásokat”:

- **Order** allow, deny
 - A jogosultsági megadások sorrendjének megadása. Először az engedélyezések, majd a tiltások.
 - **AllowAll**
 - **DenyAll**

 Bárhonnét engedélyezett, tiltott az elérés.

- **Allow from 192.168.31.1**
- **Deny from 192.168.31**
 - **Engedélyezés, tiltás adott IP címekről vagy tartományokból.**
 - **AllowUser [name]**, **AllowGroup [name]**
 - **DenyUser [name]**, **DenyGroup [name]**
 - **Engedélyezés vagy tiltás felhasználó vagy csoportnév alapján.**

- **AllowOverride on**
- **AllowOverwrite on**
 - A beállítások helyi felüledefiniálásának engedélyezése.

- **AllowRetrieveRestart on**
- **AllowStoreRestart on**
 - **Letöltés, feltöltés folytatásának engedélyezése.**

- **AllowRetrive [name]**, **AllowGroup [name]**
- **HideUser [name]**, **HideGroup [name]**
- **HideNoAccess**
- **HideFiles [regexp]**
- **IgnoreHidden on**
 - Fájlok és könyvtárak rejtése tulajdonos, tulajdonos csoport, jogosultság, vagy reguláris kifejezés alapján. Ahhoz, hogy a rejtés működjön, az IgnoreHidden
opción be kell kapcsolni.

TransferLog /var/log/proftpd/xferlog
SystemLog /var/log/proftpd/proftpd.log
A fájl átvitelek és az FTP szerver működésének naplózása.

A ProFTPD néhány modulja, a hozzá tartozó funkcióval:

• mod_auth Felhasználó hitelesítés
• mod_cap Modulok „képességeinek” (betöltés, kivétel, ...) megadása
• mod_core FTP Protokoll kezelése (RFC 959)
• mod_ldap LDAP alapú hitelesítés
• mod_log Naplózási beállítások
• mod_ls Listázás
• mod_quotatab Felhasználói kvóta
• mod_radius RADIUS (Remote Authentication Dial-In User Service) alapú hitelesítés
• mod_ratio Le és feltöltés aránya
• mod_readme Üzenetek megjelenítése
• mod_rewrite Kérések átszerkesztése menet közben
• mod_sql SQL adatbázis alapú hitelesítés és naplózás
• mod_tls TLS (Transport Layer Security) támogatása
• mod_wrap TCP wrapper használata
• mod_xfer Fájl átvitel

A ProFTPD-vel kapcsolatos parancsok:

Számos olyan parancs létezik, amely segítségével a ProFTPD működését vizsgálhatjuk és befolyásolhatjuk.

• ftpdctl A démon működését befolyásolhatjuk a segítségével.
Például az egyes virtuális szerverekre vonatkozó állapot információk, szerver indítás/leállítás, adott kapcsolatok megszakítása, ...
• ftpcount Az ftp kapcsolatok számát mutatja meg.
• ftpstat Napokra bontva statisztika a fájl átvitelekről, ezeknek a sebességéről, a sikeres átvitel arányáról.
• ftppasswd A felhasználók hitelesítésére használható helyi fájlok létrehozása (AuthUserFile, AuthGroupFile)
• ftpshut Az ftp szerver időzített leállítása.
• ftptop Az ftp szerver monitorozása a top parancshoz hasonló felületen keresztül.
• ftpwho Megmutatja, hogy kik vannak aktuálisan bejelentkezve és mióta.

A ProFTPD képes a PAM használatára. Működésére tehát hatással van a /etc/pam.d/proftpd fájl tartalma. Az alapértelmezett hitelesítési módszerek mellett ez tartalmazza a következő sort a telepítést követően:
auth required pam_listfile.so item=user sense=deny \file=/etc/ftpusers onerr=succeed

Ez a beállítás annyit jelent, hogy azon felhasználóktól, akik szerepelnek a /etc/ftpusers nevű fájlból, azoktól meg kell tagadni a bejelentkezést. Alapesetben a root-ként történő bejelentkezés pontosan emiatt kerül tiltásra.

 Példa ftpasswd használatára:
echo 'jelszo' |ftpasswd --passwd --file=/home/ftpusers --name=xyz123 --stdin --uid=1500 --gid=200 --md5 --home=/home/xyz123 --shell=/bin/false

Amennyiben egy felhasználó esetében az alapértelmezett shellt /bin/false-ra állítjuk, akkor ő normál módon nem tud bejelentkezni és parancsokat futtatni.

10.4. A Samba

10.4.1. A Samba legfontosabb jellemzői

A Samba legfontosabb jellemzői:

- A Samba szerver lehetővé teszi a fájl és nyomtató megosztást. Ebben az esetben a Samba lehet egy munkacsoport vagy tartomány tagja, vagy irányítója.
- A TCP/IP fölötti kommunikációt támogatja, mindenféle megosztás elérése csak ez alapján történhet.
- A Linux mellett más operációs rendszerekben (Unix, OpenVMS, Netware) is elérhető.
- Nyúlt forrású, GNU GPL licenc alatt érhető el
- Samba kliens segítségével képesek vagyunk „ablakozós” operációs rendszerben megosztott mappák vagy nyomtatók elérésére illetve Samba szerver által megosztott erőforrások elérésére.
- Az SMB (Server Message Block) és a CIFS (Common Internet File System) protokollokon keresztül történhet a hálózati erőforrásokhoz való hozzáférés.
- A Linux kernel tartalmazza az Smbfs és CIFS támogatást. Ezek lehetővé teszik, hogy hálózaton keresztül csatlakoztassunk egy megosztott könyvtárat (smbmount).

A Samba tehát tartalmaz olyan eszközöket, amelyek segítségével a Linux-ot futtató számítógép akár kliensként, akár pedig kiszolgálóként is működhet azon az elven, amelyen az ablakozás operációs rendszerben a „Network Neighborhood (Hálózati helyek)” is eléri a hálózati erőforrásokat.
A Samba szerver legfontosabb jellemzői:

- fájl és nyomtató megosztás az SMB és/vagy CIFS felhasználásával
- lehetővé teszi, hogy „ablakozós” operációs rendszerből vagy bármilyen SMB vagy CIFS kompatibilis program segítségével elérjük a Linux alatt megosztott erőforrásainkat
- WINS (Windows Internetworking Name Server) szolgáltatás nyújtása
- Munkacsoportok vagy tartományok létrehozása és vezérlése
- Saját profile és logon script tárolása központi helyen
- Működhet központi hitelesítő szerverként is

A Samba szerver tehát több, egymástól függetleníthető funkciót is ellát. Mind az Apache, mind pedig a ProFTPDS esetében egy fő démon folyamatról beszélhetünk, amelyek létrehoznak több szálat vagy gyermekfolyamatot. Ezzel szemben a Samba funkcióinak a megvalósítását több démon végzi.

- **nmbd**
 - névfeloldás
 - WINS, NetBIOS névkiszelgáló
 - hálózati erőforrások tallózása
- **smbd**
 - a megosztott erőforrások kezeléséért felelős
 - fájl és nyomtató megosztása
 - kommunikáció kezelése (SMB, CIFS)
 - hitelesítés, erőforrás zárolás (locking)
- **winbindd**
 - másik tartományban lévő felhasználók „leképezése” Linux UID-ra és GID-re

A démonok közül elsőként az nmbd-t majd pedig a smbd-t kell indítani. A winbindd-re csak speciális szituációban van szükség. Abban az esetben, hogyha csak WINS kiszolgálóként akarom használni a Samba-t, akkor csak az nmbd futtatására van szükségem.

A Debian 4.0 tartalmazza bináris csomagként a Samba 3.0-t. Amennyiben csomagból telepítjük (samba), akkor a /etc/init.d/samba script segítségével megoldhatjuk a Samba indítását, leállítását és újraindítását.

A Samba több TCP és UDP portot is használ. Az smbd szolgáltatás a

- 139/tcp NetBIOS Session Service
- 445/tcp Microsoft Naked CIFS

portokat, a nmbd szolgáltatás pedig a

- 137/udp NetBIOS Name Service
- 138/udp NetBIOS Datagram Service

portokat használja.
10.4.2. A Samba néhány konfigurációs direktívája

A Samba esetében Debian GNU/Linux operációs rendszerben a fő konfigurációs fájl a /etc/samba/smb.conf. A Samba konfigurálása során nagyon sok direktíva közül választhatunk.

A konfigurációs fájl esetében szögletes zárójelek jelzik egy adott blokk elejét. A blokk hatóköre egészen addig tart, amíg egy következő blokk direktíva nem kezdődik.

Egy minimális smb.conf fájl lehet a következő:

```
[global]
workgroup = A-106
[homes]
guest ok = no
read only = no
```

A [global] szekció esetében használható konfigurációs lehetőségek közül néhány:

```
security = user helyi felhasználónév és jelszó alapján
share megosztásokhoz tartozó jelszóval, ami nem kötelező
server másik Samba vagy NT szerver felhasználásával
domain tartományvezérlő (domain controller) felhasználásával
ads Active Directory használataival
```

A security értéke meghatározza, hogy a Samba milyen módon próbálja meg a bejövő kérések ellenőrzését és hitelesítését.

```
server string = Linux_debian
```

Egy leírás adható a szerver neve mellé.

```
interfaces = 172.31.0.1
bind interfaces only = yes
```

Amennyiben több hálózati eszközünk és IP címünk van, akkor megadható, hogy melyeken keresztül lehesszen a Samba szerver elérni.

```
workgroup = A-105
```

A munkacsoport vagy tartomány neve

```
hosts allow = 172.31.
hosts deny = 192.168.31.
```

Honnét engedélyezett és honnét tiltott a Samba szerver elérése.
guest account = nobody
A Vendég felhasználóhoz milyen Linux felhasználó tartozzon jogosultság szempontjából.

max log size = 500
log file = /var/log/samba/log.%m
A maximális naplófájlok méretének és helyének megadása. A példában gépnevenként különböző fájiba kerülnek a naplóbejegyzések.

color set = utf-8
client code page = 852
A karakter készlet és a kliens oldali kódlap megadása.

domain logons = yes
logon home = \%L\profiles\%U\nlogon script = logon.bat
logon drive = H:
Tartományi bejelentkezés engedélyezése és a saját felhasználói profil, a bejelentkezéskor lefutó parancsfájl és a saját meghajtó megadása.

encrypt passwords = true
Titkosított jelszavak használata.

unix password sync = false
A Samba jelszavak módosításakor a rendszerbeli jelszót is szükséges-e módosítani?

os level = 65
Az operációs rendszer „fejlettsége” a „master browser” funkció elnyeréséhez. Amennyiben kellően nagyra állítjuk, úgy biztosan a Samba szerver látja el a különböző vezérlő funkciókat.

domain master = yes
A Samba szerver legyen a tartomány esetében a master browser.

local master = yes
A Samba szerver legyen a adott alhálózat esetében a master browser.

preferred master = yes
Amikor a Samba szerver indul, akkor automatikusan magához ragadja-e a master browser funkciót.

Egy megosztás esetében használható direktívák:

A globális direktívák mellett fontos dolog, hogy milyen lehetőségeink vannak a saját megosztások esetében. A [share1] direktíva annyit jelent, hogy az utána következő utasítások a share1 nevű megosztásra vonatkoznak.

path = /home/pub
comment=Publikus adatok
A megosztáshoz tartozó elérési útvonal és megjegyzés
browseable = yes
A megosztás megjelenjen-e a tallózási listában.

read only = yes
writeable = no
Megosztás csak olvasásra.

printable = yes
Nyomtató megosztásának definiálása.

public = no
guest ok = no
A megosztás nyilvános legyen-e, tehát vendég felhasználóval is hozzá lehessen-e fénni?

create mask =0700
Fájlok esetében az alapértelmezett jogosultság amivel a fájl létrejön.

directory mask = 0770
Könyvtárak esetében az alapértelmezett jogosultság amivel a fájl létrejön.

valid users=tux beastie
invalid users = root bin daemon adm sync shutdown
Mely felhasználók számára engedélyezett/tiltott a megosztás elérése. Használhatók a direktívák a [global] szekciójában is.

read list= beastie
write list= tux @users
Azon felhasználók listája, akik csak olvashatják vagy írhatják és olvashatják az adott megosztás tartalmát. A @ jel után felhasználói csoportokat adhatunk meg.

admin users = root Administrator
Az adott megosztás esetében minden jogosultsága megvan-

veto files = /.htaccess/.tmp*/
Fájlok listázásának tiltása.

hide files= /.mc/
Fájlok „felruházása” a hidden DOS fájl attribútummal.

hide unreadable
Azon fájlok „felruházása” a hidden DOS fájl attribútummal, amelyekre vonatkozóan nincsen olvasási jogosultság.

Példák megosztásokra:

```ypassword
[homes]
comment = Home Directories
browseable = no
writeable = yes
valid users = %S
```
Minden felhasználó a saját könyvtárát elérheti.

```plaintext
[printers]
comment = All Printers
path = /var/spool/samba
printer admin = pr_admin
guest ok = Yes
printable = Yes
use client driver = Yes
browseable = No
```

A Samba esetében fontos megemlíteni, hogy amikor helyi hitelesítésről beszélünk, akkor nem a /etc/passwd, /etc/shadow alapján azonosít. A korábbi verziók esetében a /etc/samba/smbpasswd fájlban tárolódtak a felhasználók jellemzői. A 3.0-es verziótól kezdve már TDB típusú adatbázisban történik a tárolás. A /var/lib/samba/passdb.tdb fájlban tárolódnak a felhasználók adatai, illetve ugyanébben a könyvtárban találhatók egyéb konfigurációs adatbázisok is, amelyek például a megosztott nyomtatók adatait, vagy az account-okra vonatkozó egyéb adatokat tartalmazzák.

A Samba esetében a következő fontos jellemzők tárolódnak a felhasználók esetében:

- username
- UID
- Lanman Password Hash (jelszó tárolása a régebbi rendszerek számára)
- NT Password Hash (jelszó tárolása az NT és újabb rendszerek számára)
- Account flags (a jelszóval, azonosítóval kapcsolatos beállítások)

A Samba szerver működésével kapcsolatos parancsok:

- net Samba és távoli CIFS szerverek adminisztrációja
- pdbedit Samba felhasználók felvétele, jellemzőik módosítása
- smbcontrol Vezérő üzenet küldése a démonoknak
- smbpasswd Samba felhasználók jelszavának módosítása
- smbstatus Samba állapotának megtekintése
- testparm smb.conf ellenőrzése

A Samba kliens oldalhoz kapcsolódó parancsok:

- findsmb Távoli SMB-t használó gép keresése
- nmblookup NetBIOS nevek feloldása
- rpcclient MS-RPC hívások végrehajtása
- smbcacls NT ACL-ek manipulációja SMB megosztásokon
- smbclient FTP kliensre hasonlító SAMBA kliens
- smbget wget-szerű program SAMBA-n keresztüli letöltésre
- smbspool Fájl küldése SAMBA nyomtatónak
- smbtab SAMBA megosztások mentése szalagra
- smbtree Karakteres felület SMB hálózat tallózó
Az `smbmount` (mount.smb) parancs segítségével megtehetjük egy SMB-n keresztül megosztott könyvtár csatlakoztatását. Az `smbmount` parancs fontosabb opciói:

```bash
smbmount service mount-point [ -o options ]
```

Ahol:
- **service:** egy hálózati erőforrás megadása az UNC szintaxiszhoz hasonlóan. Ebben az esetben a `//host/share` jelölést használhatjuk, ahol a `host` jelenti a Samba szerver nevét vagy IP címét, a `share` pedig a megosztás nevét.
- **mount-point:** csatlakoztatási pont

Az opciók esetében a fontosabb lehetőségek:
- **username=:** a felhasználó, akivel csatlakozni kívánunk
- **password=:** a kapcsolódáskor használandó jelszó
- **guest:** vendékgént való csatlakozás
- **uid=:** a helyi UID, akinek a „tulajdonába kerül” a csatlakoztatott könyvtár
- **gid=:** a helyi GID, akinek a „tulajdonába kerül” a csatlakoztatott könyvtár
- **workgroup=:** a munkacsoport vagy tartomány neve
- **ip=:** a szerver IP címe
- **ro:** csak olvasható módban
- **rw:** írható és olvasható módban
- **iocharset=:** adott karakterkészlet használata
- **codepage=:** adott kódlap használata

Az `smbmount` parancs segítségével leválaszthatunk egy csatlakoztatott SMB megosztást.

Példa `smbmount` használatára:

```bash
smbmount //srv/apps /mnt/prgs -o options username=tux,password=titok
```

A Debian tartalmazza a `swat` (Samba Web Administration Tools) nevű csomagot, amely segítségével böngészőn keresztül lesz lehetőségünk a Samba konfigurálására.

10.5. A MySQL

10.5.1. A MySQL szerver legfontosabb jellemzői

- több felhasználós, több szálú adatbázis szerver
- SQL alapú, az ANSI/ISO SQL nyelvet használja saját bővítésekkel
- sebességre optimalizált
- nagy felhasználói tábór
- a 4.1-es verziótól felfelé van beágyazott SELECT
- az 5.0-as verzióból megjelentek a nézetek (VIEW) és a triggerek és a tárolt eljárások támogatása
- különféle Storage Engine -eket támogat (MyISAM, InnoDB, ...)
- képes együttműködni a Linux HA (High Availability) alkalmazásaival
- megoldható több szerver szinkron vagy szinkron replikációja
- képesek vagyunk MySQL klaszterek építésére
- több programozási nyelvből elérhető különféle API-k, csatolók és program-könyvtáarak (library) felhasználásával
- különböző nyelvek és karakterkészletek támogatása

A MySQL 5.0 elérhető csomagból is, de a gyártó különböző platformokra biztosít belőle előre fordított binárisokat. Amennyiben 32 bites rendszerünk van, úgy pl.: a mysql-5.0.51a-linux-i686-glibc23.tar.gz számunkra megfelelő lesz. A gcc mellett elérhető az Intel C fordítójával előállított változat is. A MySQL hivatalos weboldala a http://www.mysql.com, a Community Server a http://dev.mysql.com-ról tölthető le.

10.5.2. A MySQL szerver telepítése bináris archívumból

Ha szeretnénk tudni a telepítési lépéseket, leggyorsabban, hogyha belenézünk az tömörített fájlba, és áttekintjük az ott lévő INSTALL-BINARY fájl tartalmát. Ebben megtalálhatjuk azokat a parancsokat, amelyek segítségével telepíthetjük a MySQL adatbázis szervert.

Tételezzük fel, hogy letöltöttünk a /root könyvtárba a mysql-5.0.51a-linux-i686-glibc23.tar.gz-t.

Ebben az esetben a telepítés egyes lépései:

- groupadd mysql
- useradd -g mysql
- cd /usr/local
- tar xzvf /root/mysql-5.0.51a-linux-i686-glibc23.tar.gz
- ln -s mysql-5.0.51a-linux-i686-glibc23 mysql
- cd mysql
- chown -R mysql .
- chgrp -R mysql
- scripts/mysql_install_db --user=mysql
- chown -R root .
- bin/mysqld_safe --user=mysql

Amennyiben már egy korábbi verziót telepítettünk a gépre, úgy a telepítése egyes lépésein feleslegesek. Ebben az esetben csak a kicsomagolás és a
jogosultságok beállítása szükséges. A korábbi verzióból (feltéve, hogy az is 5.0-s ághoz tartozik) át lehet másolni az adatbázisokat

10.5.3. A MySQL könyvtárak és parancsai

A telepítést követően a következő könyvtárak és fájlok jönnek létre a /usr/local/mysql könyvtárban (a fájlok esetében csak a fontosabbakat sorolom fel):

- **bin** a MySQL-hez tartozó binárisok
 - mysql MySQL monitor (parancs soros kliens)
 - mysqladmin az adatbázis szerver adminisztrálása
 - mysql_client_test a kliens működésének tesztelése
 - mysql_config a fordítás opciók lekérdezése
 - mysqld a MySQL démon
 - mysqldump mentés készítése adatbázisról vagy tábláról
 - mysqld_multi több MySQL szerver egyidejű kezelése
 - mysqld_safe az adatbázis szerver indítása
 - mysqldump adatok importálása adattáblába
 - mysqlshow adattáblák felépítésének megmutatása
 - mysql_upgrade adattáblák ellenőrzése frissítéskor
- **data** adatbázisok: minden adatbázis külön könyvtárban az adatbázis nevének megfelelően
- **docs** dokumentáció
 - mysql.info header fájlok
 - include program-könyvtárak
 - man felhasználói kézikönyv oldalak
 - mysql-test adatbázis működési tesztje
- **scripts**
 - mysql_install_db a kiindulási adatbázis létrehozása
 - share nyelvi fájlok, karakter készletek
 - sql-bench sebesség tesztelése
 - support-files példa konfigurációs fájlok, scriptek
 - mysql.server init.d script a szerver indítására, leállítására
 - tests Perl nyelven készített tesztelő scriptek

10.5.4. A MySQL néhány konfigurációs direktívája

A MySQL konfigurálása az alábbi fájlokkal segítségével lehetséges:

- `/etc/my.cnf` globális beállítások
- `$MYSQL_HOME/my.cnf` a szerverre vonatkozó beállítások (MYSQL_HOME vagy a telepítési könyvtár elérésű útvonalát, vagy pedig az adatbázisokat tartalmazó könyvtár elérésű útvonalát tartalmazza)
- `--defaults-extra-file="file"` a szerver paramétereként átadható tetszőleges konfigurációs fájl
- `~/.my.cnf` felhasználóként a saját beállításainkat megadhatjuk

A konfigurációs fájl jellege hasonlít a Samba esetében használt módszerhez. Itt is szekciók vannak, amelyek elejét szögletes zárójelekkel jelöljük

A konfiguráció fájban lehetnek:

- `#megjegyzések`

119
• [group] # adott program vagy csoportnév amelyre az utána lévő beállítások vonatkoznak
• option # opció paraméterek nélkül
• option=value # opció paraméterrel
• set-variable=variable=value # szerver által használt „belső változók”

Példa MySQL konfigurációjára:

```
[client]
#password = my_password
port = 3306
socket = /var/run/mysqld/mysqld.sock

[mysqld]
user = mysql
basedir = /usr/local/mysql
datadir = /usr/local/mysql/data
language = /usr/local/mysql/mysql/share/hungarian
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
port = 3306
log = /var/log/mysql.log
tmpdir = /usr/local/mysql/tmp
default-character-set=utf8
```

Az előző példában szereplő opciók jelentése:
• user # a felhasználó, akinek a nevében kell futtatni a szervert
• passwd # a kliens kapcsolódáshoz használt jelszó
• basedir # a telepítési könyvtár
• datadir # az adatbázisokat tartalmazó könyvtár
• port # a használt TCP port, alapértelmezés a 3306
• socket # az 's' típusú speciális fájl, amin keresztül a kommunikáció történik
• language # a hibaüzenetek nyelve
• default-character-set # alapértelmezett karakter készlet
• tmpdir # könyvtár az ideiglenes fájlok számára
• log # a naplófájl helye
• pid-file # a démon PID-je ebben a fájlban lesz tárolva

A MySQL néhány további beállítása:

```
bind-address=127.0.0.1
Melyik IP címen keresztül legyen elérhető
skip-networking
Csak helyileg lesz elérhető a szerver egy Unix Domain Socket-en keresztül.
max_connections=200
A maximális egyidejű kapcsolatok száma
```

120
Amennyiben nem szükséges, hogy az adatbázis szerver hálózaton keresztül is elérhető legyen, úgy célszerű beállítani, hogy csak localhost-on hallgatózzon. Ekkor egy külső támadó közvetlenül nem tudja támadni az adatbázis szervert. A kapcsolatok számának korlátozása pedig megakadályozza, hogy a szerver tűzoltott terhelését.

10.5.5. A MySQL jogosultsági rendszere

Ahhoz, hogy adatbázis szervert tudjuk adminisztrálni, ismernünk kell, hogy az milyen módon azonosítja a felhasználókat. A MySQL esetében a felhasználói adatok a „mysql” nevű adatbázisban tárolódnak.

A MySQL szerver két lépésben ellenőrizz egy adott klienst:
- Elsőként ellenőrzi, hogy adott helyről (IP címről) megengedett-e a kliens kapcsolódása.
- Amennyiben ez lehetséges, akkor a kapcsolatot követően minden parancs végrehajtásakor megvizsgálja, hogy az adott kliens rendelkezik-e a megfelelő hozzáféréssel.

Jogosultság szempontjából a következő adattáblákat használja a MySQL:
- **user**: Ebben vannak tárolva a globális jogosultságok. Melyik host-ról jelentkezhet be adott felhasználó, a megfelelő jelszóval és mik az ő jogosultságai.
- **db**: Ebben van tárolva, hogy melyik host-ról érhet el egy adott felhasználó egy adatbázist és milyen módon.
- **host**: Ebben van tárolva, hogy melyik host-ról érhető el egy adatbázis és milyen módon.

Ezen három tábla alapján meghatározható, hogy egy felhasználónak van-e arra lehetősége, hogy kapcsolódjon. Illetve, hogyha tudott kapcsolódni, akkor adatbázis szinten milyen jogosultságai vannak.
- **tables_priv**: Ebben vannak tárolva, hogy adott helyről adott felhasználónak milyen jogosultságai vannak egy bizonyos adattáblára vonatkozóan.
- **columns_priv**: A táblá jogosultságai mellett itt még adott oszlopokhoz tartozó jogosultságok is tárolva vannak.
- **procs_priv**: A szerver oldali tárolt eljárásokra és függvényekre vonatkozó jogosultságok.

A jogosultságok meghatározása az alábbi képlet alapján történhet:

<table>
<thead>
<tr>
<th>Jogosultság szint</th>
<th>Képlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global level</td>
<td>(user)</td>
</tr>
<tr>
<td>Database level</td>
<td>(db AND host)</td>
</tr>
<tr>
<td>Table level</td>
<td>(tables_priv)</td>
</tr>
<tr>
<td>Column level</td>
<td>(columns_priv)</td>
</tr>
<tr>
<td>Routine level</td>
<td>(procs_priv)</td>
</tr>
</tbody>
</table>

A MySQL által használt jogosultságok (privilégiumok):

A jogosultságokat csoportosíthatjuk olyan szempontból, hogy melyik szinten
adhatjuk meg. Az előző képletből megnézhetjük a különböző jogosultsági szinteket.

Adatbázis szinten a következő jogosultságok adhatók meg:

- **SELECT** jog SELECT parancs végrehajtására
- **INSERT** jog INSERT parancs végrehajtására
- **UPDATE** jog UPDATE parancs végrehajtására
- **DELETE** jog DELETE parancs végrehajtására
- **CREATE** jog adattábla létrehozásra (CREATE TABLE)
- **DROP** jog adattábla törlésére (DROP TABLE)
- **GRANT** jog jogosultságok adására
- **REFERENCES** jog hivatkozások használata révén
- **INDEX** jog index létrehozására és törlésére
- **ALTER** jog adattábla szerkezetének változtatására (ALTER TABLE)
- **CREATE TEMPORARY TABLES** jog ideiglenes adattábla létrehozására
- **LOCK TABLES** jog adattábla zárolására
- **CREATE VIEW** jog nézetek létrehozására
- **SHOW VIEW** jog nézetek megtekintésére
- **CREATE ROUTINE** jog eljárások és függvények használata révén
- **ALTER ROUTINE** jog eljárások és függvények változtatására
- **EXECUTE** jog eljárások és függvények végrehajtására
- **TRIGGER** jog trigger létrehozására és törlésére

Az adatbázis szintű jogosultságok magukba foglalják a tábla, oszlop és rutin szintű jogosultságokat.

Globális szinten az adatbázis szintű jogosultságok mellett még a következők is elérhetők:

- **RELOAD** jog a szerver beállítások újraolvasásához
- **SHUTDOWN** jog a szerver leállításához
- **PROCESS** jog a szerver folyamatok megtekintésére
- **FILE** jog adatok fájomba mentésére (SELECT INTO) és betöltésére (LOAD DATA)
- **SHOW DATABASES** jog az adatbázisok megtekintésére
- **SUPER** jog a szerver megfigyeléséhez, kliensek kapcsolatok megszakításához, a szerver működésének megváltoztatásához
- **REPLICATION CLIENT** jog a master szerver eléréséhez (replikáció esetében), a frissítéshez feltétlenül szükséges
- **REPLICATION SLAVE** jog a master vagy a slave állapotának lekérdezéséhez
- **CREATE USER** felhasználó létrehozása és jellemzőinek módosítása
A rendszergazdai jelszó megadása:

Miután egy adatbázis szerver telepítettünk, elsőként a rendszergazdai jelszót kell beállítanunk. A jelszó beállítását többféle módon is megtehetjük:

A SET PASSWORD FOR utasítással:
mysql -u root mysql
mysql> SET PASSWORD FOR root@localhost=PASSWORD('new_passwd');
mysql> SET PASSWORD FOR root@"hostname"=PASSWORD('new_passwd');

Figyeljünk arra, hogy alapesetben kettő felhasználó esetében is be kell állítanunk a jelszót.

Mivel a jogosultságok is adattáblában vannak tárolva, ezért adatbázis művelettel is megoldható.

mysql -u root mysql
mysql> UPDATE user SET Password=PASSWORD('new_passwd') -> WHERE user='root';
mysql> FLUSH PRIVILEGES;

Amennyiben a későbbiekben kapcsolódni akarunk a szerverhez, akkor szükséges a -p opció megadása a parancs esetében. Ebben az esetben ugyanis nem próbál meg jelszó nélkül csatlakozni, hanem bekéri a jelszót.

Jogosultság adása és elvéttele felhasználóktól:
Jogosultság adás a GRANT utasítás segítségével történhet. Ennek általános szintaxisa a következő:

GRANT [privileges] ON [db or table] TO [user@host] IDENTIFIED BY 'password';

Példa jogosultság adásra:

GRANT SELECT ON test.* TO db1@localhost IDENTIFIED BY 'db1_jelszo';
GRANT SELECT, INSERT ON test.log TO db2@a-621 IDENTIFIED BY 'db2_jelszo';

Az első parancs a test nevű adatbázis összes táblájára vonatkozóan ad SELECT jogosultságok a db1 nevű felhasználónak, aki localhost-ról bejelentkezhet az utasítás végén megadott jelszóval.
A második parancs esetében az adott felhasználó két privilégiumot kap, de csak a test adatbázis log nevű táblájára vonatkozóan.

Jogosultság visszavonása a REVOKE parancs megadásával történhet. A parancsot például az alábbi módon használhatjuk:

REVOKE [privileges] ON [db or table] FROM [user@host];
Példa jogosultság megvonásra:
REVOKE SELECT ON test.* FROM db1@localhost;
REVOKE INSERT ON test.log FROM db2@a-621;

10.5.6. Adatbázis mentése és visszaállítása MySQL-ben

Gyakran lehet arra szükség, hogy egy adatbázis vagy annak egy adattábláját
mentenünk kell, majd egy másik gépre átvinni (importálni). A MySQL
alapértelmezésként SQL fájlt generált, amelyet, hogyha egy másik megfelelő
verziójú MySQL-ben futtatunk, akkor automatikusan a mentett adatbázis
létrejön.

A mentés elvégezhető a mysqldump parancs segítségével.

```bash
mysqldump -u root -p db1 table1 > db1_dump.sql
```

Amennyiben sikeresen beírjuk a rendszergazdai jelszót, úgy a db1 adatbázis
táblájának mentése belekerül a db1_dump.sql fájba. Alapértelmezésként a parancs elhelyezzi a mentés elején a tábla létrehozásához szükséges CREATE TABLE utasítást is. A `-t` kapcsolóval megoldható, hogy csak az adatok kerüljenek bele a fájba, a `-d` kapcsolóval pedig csak a tábla
létrehozását menti a fájba, a benne lévő adatokat figyelmen kívül hagyja.

Visszaállításnál használhatjuk a mysql parancsot. Amennyiben az adattábla már
létezik, akkor törölni kell a tartalmát vagy esetlen a táblát is. Amennyiben a
mentés elején ott van a tábla létrehozó utasítás, akkor a következő parancssal
meg tudunk tenni egy visszaállítást:

```bash
mysql -u root -p db1 table1 < db1_dump.sql
```

10.6. A Linux mint levelező szerver

10.6.1. Az e-mail küldéssel kapcsolatos fogalmak és problémák

Az elektronikus levelezés már jó néhány éve a kommunikáció egyik fő eszköze
lett. Az e-mail kezelésével kapcsolatban definiálnunk kell fogalmakat:

- **MTA (Mail Transfer Agent):** Az az alkalmazás, amely az elektronikus levelek
 fogadását és kézbesítését végzi (E)SMTP ((Extended) Simple Mail Transfer
 Protocol) vagy vele „rokon” protokoll segítségével. Ilyen alkalmazás
 például: exim, sendmail, qmail, mail, postfix, ...
- **MDA (Mail Delivery Agent):** Olyan alkalmazás, vagy démon, amely a
 levelek kézbesítését végzi. Ilyen alkalmazás például a procmail. A postfix
 esetében például a local vagy a virtual démonok látják el ezt a feladatot.
- **MUA (Mail User Agent):** Olyan alkalmazás, amely segítségével az
 elektronikus leveleslátádnak kezelhetjük és a vele kapcsolatos alapvető
 műveleteket (olvasás, írás, törlés, nyomtatás, ...) elvégezhetjük. Manapság
 a legtöbb ilyen alkalmazás biztosít lehetőségeket a levelek szűrésére és
 különböző mappákba való csoportosítására. Példa MUA alkalmazásokra:
 mutt, pine, kmail, Mozilla Thunderbird (Icedove), SquirrelMail, ...

A levelezéshez számos alkalmazás szintű protokoll kapcsolódik:
• SMTP: Az MTA-k közti kommunikációra.
• POP3 (Post Office Protocol): Levelek letöltése és törlése
• IMAP (Internet Message Access Protocol): Levelek letöltése, mozgatása, törlése a szerveren.

Az utóbbi kettő protokollnak elérhetők olyan változatai is, amelyek esetében a kapcsolat titkosított (pl.: SSL felett). Ajánlott ezeknek a használata a nagyobb biztonság érdekében.

Az SMTP protokoll egy régi protokoll. Amikor kitalálták, akkor elég volt 7bites adatok átvitele. Ez az örökség a mai napig létezik. Amikor valamilyen bináris fájl, vagy ékezetes betűt szeretnénk átvinni, abban az esetben szükséges az adataink 8bitesről 7 bitesre alakítása. A természetesen méret növekedéssel jár. Ahhoz, hogy mellékleteket lehessen csatolni, fontos kiterjesztés a MIME (Multipurpose Internet Mail Extension). Ezzel a levél tartalmát több részre bonthatjuk, és ahol szükséges a 8bites adatokat például Base64 kódolással 7 bitessé alakíthatjuk.

A levelezéshez kapcsolódik a levelek digitális aláírása. Ahhoz, hogy biztosak legyünk abban, hogy ki küldte nekünk a levelet ellenőriznünk kell a digitális aláírását. Sok levelező programban elérhető gpg (OpenPGP) bővítmény, amellyel megvizsgálhatjuk az aláírást. A program emellett, hogy aláírásra használható, akár egy levél titkosított küldésére is képes. Az SMTP protokoll megengedi az anonymous levél küldését.

10.6.2. Az Postfix

10.6.2. Az Postfix

A Postfix server fejlesztésétől, programozásától és felügyeletétől eltekintve, különböző alkalmazásokat szolgáltat, amelyek segítségével lehetővé teszik a Postfix használatát. Az alábbiakban megismerjük néhány fontos szolgáltatást:

- **Postfix**
 - **Verzión**: 2.5.1
 - **Kategória**: Szerver
 - **Funkciók**: Emlékezés, szűrők, beállítások, adatbázisok
 - **Támogatás**: Számos operációs rendszeren

Az alábbiakban néhány fontos alakzatot láthatjuk:

- **Moduláris**: A Postfix nagymértékben moduláros, így könnyen konfigurálható.
- **Számos Szűrő**: A Postfix számos szűrőt használ, amelyek segítségével lehetővé teszik a spam és vírus szűrését.
- **Adatbázisok**: A Postfix rendelkezik adataiból származó adatbázisokkal, amelyek segítségével lehetővé teszik a levelezési listák kezelését.
- **EOF (End of File)**: A Postfix különleges beállításai közé tartozik a EOF (End of File), ami lehetővé teszi a külső adatbázisokból adatok betöltését.
- **SASL (Simple Authentication and Security Layer)**: A Postfix támogatja a SASL segítségével lehetővé tevő hitelesítési protokollkat, amelyek segítségével lehetővé teszik a hivatalos és különféle hitelesítési protokoll használatát.
- **TLS (Transport Layer Security)**: A Postfix támogatja a TLS segítségével lehetővé tevő kivételbázist, amelyek segítségével lehetővé teszik a biztonságos e-mailküldést.

A Postfix alapvetően egy hivatalos, számos operációs rendszeren elérhető és könnyen konfigurálható szerver, amely a levelezéshez szükséges szolgáltatásokat biztosít. A Postfix használata segíthet a levelezési lista kezelésében, a spam és vírus szűrésében, valamint a hitelesítési protokoll használatában.
• Virtuális felhasználói fiókok és tartományok hozhatók létre.
• Együttműködés a POP3 és IMAP kiszolgálókkal. (pl.: Dovecot)

Amikor a Postfix levelező szervert csomagból telepítjük, akkor az alábbi lehetőségek közül választhatunk:

• No configuration Ebben az esetben nem akarunk kezdeti konfigurációt.
• Internet Site Mint az internethez kapcsolódó gép, képes legyen a levél fogadásra és kézbesítésre.
• Internet with smarthost Ebben az esetben ez a gép fogadja az internet felől érkező leveleket és továbbadja egy másiknak (smarthost), amely helyezi el a felhasználók leveleit a megfelelő helyre.
• Satellite system Átjátszóként működik két szerver között.
• Local only Csak helyi kézbesítés.

![A Postfix e-mail fogadási folyamata: 3. sz. ábra](image)

A Postfix esetében a master nevű démon irányítja az elektronikus levelezést. Ő indítja el az egyes démonokat és avatkozik be a rendszer működésébe a kapott visszacsatolások révén.

A fogadás esetében a fontosabb módszerek, lehetőségek:

- Egy elektronikus levél származhat egy helyi felhasználótól. Ebben az esetben a sendmail parancs a (kompatibilitás miatt) fogadja e levelet, majd átadja a postdrop parancsnak, amely elhelyezi azt a maildrop nevű sorban. Innét a pickup nevű démon szedi ki és továbbítja a cleanup felé.
- A hálózat felől érkező levelek esetében az SMTP-n vagy QMTP-n (Quick Mail Queuing Protocol (az SMTP gyorsítása a nagyobb teljesítmény érdekében))
keresztüli leveleket tudja fogadni. Ennek a megvalósítását az *smtpd* és a *qmqpd* végzi. A fogadásokról az *anvil* gyűjti a statisztikákat és figyeli, hogy kapcsolódások számát és értesíti erről a *master*-t.

Ezután a cleanup szerver végzi el a leveleken az utolsó módosításokat, például a From: és egyéb fejrész elemek hozzáadását. Fontos a szerepe abból a szempontból is, hogy fogadj a visszapattanó leveleket és a levelező szerver üzenetét is. Ezután a levelek az incoming queue-ba kerülnek.

A levél küldésének egyszerűsített folyamatát a következő ábra mutatja be:

A Postfix e-mail küldési folyamata: 4. sz. ábra

A küldési folyamat „lelke” a qmgr (queue manager). Azért, hogy ne lehessen túlterhelni egy kis méretű sor (active) alapján történik az üzenetek feldolgozása és továbbítása az egyes kézbesítő ügynökök (delivery agent) számára. A trivial-rewrite démont cím átírásra, cím feloldásra és cím ellenőrzésre használhatja fel. A fontosabb üzenet kézbesítő démonok:

- **smtp** küldés hálózaton keresztül SMTP-vel
- **lmtp** küldés hálózaton keresztül LMTP (Local Mail Transfer Protocol)-al
- **local** helyi felhasználók postafiókjába
- **virtual** helyi „virtuális” felhasználók postafiókjába
- **pipe** levél továbbadása pipe felhasználásával (pl.: UUCP (Unix to Unix Copy) használatakor)
- **bounce** visszapattanó levelek (cleanup)
- **defer** késieltetett levelek (cleanup)
10.6.3. A Postfix néhány konfigurációs direktívája

A Postfix esetében is rengeteg opció közül választhatunk a konfiguráció során. A `/etc/postfix/main.cf` néhány beállítása:

- `command_directory = /usr/sbin`
 A Postfix parancsainak elérési útvonala.

- `daemon_directory = /usr/lib/postfix`
 A démonok elérési útvonala.

- `queue_directory = /var/spool/postfix`
 Az üzenetsorok elérési útvonala.

- `inet_interfaces = eth0`
- `inet_protocols = ipv4`
 A hálózati interfész és a protokoll megadása, amit figyelni kell.

- `mail_owner = postfix`
- `setgid_group = postdrop`
 A felhasználó, felhasználói csoport akinek a nevében a levelezőszerver működik.

- `default_privs = nobody`
 Az alapértelmezett felhasználó a helyi kézbesítéshez.

- `message_size_limit = 10240000`
 Maximális levél méret.

- `mail_spool_directory = /var/mail`
 A felhasználók leveleit tároló könyvtár.

- `syslog_facility = mail`
- `syslog_name = postfix`
 A naplózási beállítások.

- `myhostname = maildomain.hu`
 A levelezőszerver neve (FQDN).

- `mydomain = domain.hu`
 A tartománynév megadása.

- `myorigin = /etc/mailname`
 A helyi kimenő levelek esetében milyen nevet fűzzön a küldő neve után.

- `mynetworks = 127.0.0.0/8 192.168.31.0/24`
 Azon alhálózatok, ahonnan engedélyezett a levél küldése (mail relay).
mydestination = $myhostname, $myorigin, $mydomain, localhost.
$mydomain, , localhost
Azon címek listája, amelyek esetében a levelezőszerver úgy veszi, hogy ő a célállomás.

alias_database = hash:/etc/aliases
alias_maps = hash:/etc/aliases
A fájl, ahol az álnevek találhatók. A levelek kézbesítése más felhasználó levelesládájába.

relayhost = mail.szolgaltatott.hu
Adott hoszt neve vagy IP címe, aminek egy belső hálózat felől továbbítani kell a levelet, és az fogja kézbesíteni a célhelyre.

smtpd_recipient_restrictions =
 permit_mynetworks,
 reject_invalid_hostname,
 reject_non_fqdn_hostname,
 reject_non_fqdn_sender,
 reject_non_fqdn_recipient,
 reject_unknown_sender_domain,
 reject_unknown_recipient_domain,
 reject_unauth_destination,
 reject_rbl_client cbl.abuseat.org,
 permit
Fontos annak a beállítása, hogy a szerverünk milyen feltételeknek megfelelően fogadj a és kézbesítse az elektronikus leveleket. Nem célszerű az open relay, mert órákon belül „fekete listára” kerülhetünk a spam-elés miatt. Csak olyan helyről célszerű leveleket fogadni, amely hosztok rendelkeznek regisztrált tartománnyal és FQDN-el.

A levelező szerver csak azon tartományokra címzett leveleket fogadja el, amelyek a saját normál vagy virtuális domének között szerepelnek.

A postconf parancs használatával megtekinthetjük az összes konfigurációs paramétert, illetve azoknak beállított és alapértelmezett értékeit.

10.6.4. A Postfix adminisztrációs parancsai
A /etc/init.d/postfix script segítségével a levelezőszerver indítható, leállítható, újraindítható.

- mailq levélküldő sor tartalmának listázása
- postalias alias adatbázis karbantartása
- postcat sorban lévő levél tartalmának megtekintése
- postconf konfiguráció megtekintése, beállítása
- postdrop levél elhelyezése a maildrop sorba
- postfix indítás, leállítás
- postkick üzenetküldés Postfix szolgáltatásnak
- postlock a leveleket tartalmazó könyvtár zárolása és parancs
futtatása

• postlog naplózás
• postmap „lookup táblák” közti átalakítás
• postqueue sorok vezérlése
• postsuper sorok vezérlése amikor a levelezőszerver nem fut

10.7. A Linux mint tűzfal

10.7.1. A tűzfalak általános jellemzői, típusaik, elvek

A tűzfal a hálózati védekezés fontos eszköze. A segítségével meghatárhozhatjuk, hogy milyen forgalom juthat be a hálózatba illetve milyen helyekre lehessen kifelé adatokat küldeni. A tűzfal segítségével tehát védjük a hálózatunkon lévő számítógépeinket, ezen keresztül az adatainkat. Közvetetten mondhatjuk azt, hogy az adott cég vagy szerveret jó hírét is. Fontos, hogy a tűzfalat olyan helyre kell elhelyeznünk, hogy mindenfajta hálózati forgalom csakis rajta keresztül történhesse. A gyakorlatban ez annyit jelent, hogy több hálózati interfésszel rendelkező eszközt vagy számítógépet iktatunk a hálózati eszközök közé. Ezután definiálnunk kell azt, hogy melyik eszkökről melyik irányokba történhet kommunikáció és milyen típusú.

A tűzfal esetében kérdés, hogy milyen eszközt használjunk a megvalósításához:

• célhardvert (hardveres tűzfal)
• szoftveres megvalósítást (pl. Linux, OpenBSD, ...)

A szoftveres megoldás általában olcsóbb és valamivel kisebb teljesítményt nyújt mint a hardveres megvalósítások. Az, hogy melyiket célszerű választanunk több tényezőtől is függ.

Amikor a védekezésről beszélünk megkülönböztethetünk különböző működési modelleket:

• helyi védekezés: egy szerver esetében fontos, hogy védekezzünk a szerver tülterheléseellen illetve korlátozzuk az egyes szolgáltatások elérhetőségét
• tűzfallal védett LAN: ebben az esetben a tűzfal két hálózatot választ el egymástól. Az egyik a „külső” hálózat, ahonnan várhatók a támadások, míg a másik a „belső” hálózat amit védeni szeretnénk. Ebben az esetben kettő hálózati interfészre van szükségünk.
• tűzfallal védett LAN DMZ (De-militarized Zone)-vel kiegészítve. Ez annyiban különbözik az előzőtől, hogy a LAN-ban lévő gépek egy csoportját elkülönítjük. Azok a gépek, amelyek valamilyen szolgáltatást biztosítanak kerülhetnek bele ebbe a csoportba. A tűzfal ebben az esetben három interfésszel kell, hogy rendelkezzen. A módszer előnye az, hogy szabályozni lehet, hogy milyen módon lehessen a DMZ-ben lévő szerverekhez hozzáférni a külső hálózat felől, illetve a belső LAN-beli gépekről. Ebben az esetben általában a LAN-beli gépek külső elérése tiltott.

A tűzfalakat működési módjuk szerint különböző csoportokba sorolhatjuk:

• csomagszűrő tűzfalak: ebben az esetben a tűzfal képes az összes hozzáérkező csomagon ellenőrizéseket végrehajtani. Az IP csomag fejrészének
minden mezőjé alapján lehetséges a szabályok megfogalmazása. Természetesen az IP-ben utazó szállítási protokollokra vonatkozóan is lehetséges szüрезetek tenni. A tűzfal ebben az esetben csak portokkal foglalkozik, nem képes annak a vizsgálatára, hogy ott milyen kommunikáció folyik.

- **Dinamikus csomagszűrő (csomagvizsgáló) tűzfalak**: annyival több, mint az előző, hogy képes az egyes protokollok állapotainak a figyelmebe vételére. Ennélfogva képes megkülönböztetni, hogy egy adott adatfolyam egy meglévő kapcsolathoz tartozik-e, vagy pedig egy teljesen új.
- **Alkalmazás szintű tűzfalak**: képesek adatfolyamba való beletekintésre, ami alapján el tudják dönteni a kommunikáció típusát és szükségességét.
- **Proxy tűzfalak**: Szintén az alkalmazási szinthez köthetők. Egy proxy esetében megvalósítható, hogy felhasználói névhez és jelszóhoz kössük a kommunikáció lehetőségét.
- **NAT (Network Address Translation) útválasztók**: Ebben az esetben egy gép végzi a címfordítást és rajta keresztül történhet a belső hálózatból történő kommunikáció. A módszer előnye, hogy elrejtjük a belső hálózatot, hátránya viszont az, hogy nagyobb erőforrást igényel a működéséhez. A belső hálózat összes gépe ebben az esetben egy IP cím mögül fog látszani a külső hálózat gépei számára. Amennyiben egy szolgáltatás esetében IP cím alapján van adott számú kapcsolódási lehetőség, előfordulhat, hogy azért nem érjük el a szolgáltatást, mert valaki más a belső hálózatunkból épp használja azt.
- **Személyes tűzfalak**: Ebben az esetben a cél egy önálló rendszer védelme. A külső támadások mellett előfordulhatnak belső támadások is. Ezek ellen csak úgy védekezhetünk, hogy korlátozzuk a szolgáltatások hozzáférhetőségét.

Egy tűzfal csak akkor ad biztonságot, hogyha jól be van állítva. Amennyiben „túl megengedő”, akkor olyan adatforgalom is áthaladhat rajta, amely nem kívánatos lenne. Ahhoz, hogy ilyen probléma ne jelentkezzen ajánlott néhány elvet, szabályt betartani.

- **Mindent tilos kivéve amit szabad elv!** Elsőként tiltsunk le mindenféle forgalmat, majd a szükségeseket engedélyezzük.
- **Tiltsuk le a „source route” IP opciót tartalmazó csomagok átengedését.** Egy csomag ne rendelkezhesen a saját útválasztására vonatkozóan.
- **Védekezzünk az IP hamisítás (IP spoofing) ellen.** Mindig ellenőrizzük, hogy egy IP címől érkezett csomag a megfelelő interfészen keresztül érkezett-e. Ne engedjük, hogy egy külső helyről azt próbálják meg elhíteni, hogy az adatforgalom egy belső IP címől érkezett.
- **Védekezzünk az elárasztás (flooding) és a DoS típusú támadások ellen, úgy, hogy korlátozzuk egy adott időintervallumra vonatkozó kapcsolatok számát.**
- **Figyeljünk oda a naplózásra, a naplófájlok méretére.**

10.7.2. A kernel szintű tűzfal

A Linux esetében kernel szintű tűzfalról beszélhetünk. A tűzfal megvalósítása kernel szintjén történik. Amennyiben a kernelünk rendelkezik a megfelelő
támogatással, akkor definiálhatjuk a tűzfalunk szabályait. A szabályok meghatározása felhasználói térben futó alkalmazások segítségével történhet. A következő alkalmazások segítségével definiálható a tűzfal az egyes kernel verziók esetében:
 - 1.1 ipfw
 - 2.0 ipfwadmin
 - 2.2 ipchains
 - 2.4, 2.6 iptables

A keretrendszerben lévő szoftverek segítségével megoldható:
 - a csomagszűrés (packet filtering) – filter alrendszer
 - a hálózati cím és port fordítás (network address [and port] translation NA[P]T) – NAT alrendszer
 - csomag megváltoztatás (packet mangle) – mangle alrendszer
 - kapcsolat követés (connection tracking) – conntrack alrendszer

Az iptables egy általános táblázatokat tartalmazó struktúra, amelyben a szabályokat definiálhatjuk. Egy szabály két részből áll:
 - iptables matches: ez jelenti az egyezési feltételeket
 - iptables target: ez jelenti a teendőt, amelyet egy feltétel esetében el kell végezni

Az újabb kernelek esetében a szabályokat az iptables parancs segítségével definiálhatjuk. A szabályokat minden rendszerinduláskor be kell tölteni. Van arra lehetőség, hogy a szabályokat csoportosítsuk és saját láncokat hozzunk létre.

Az előző ábra bemutatja, hogy miként halad keresztül egy csomag a csomagszűrőben:

Egy csomag útja a csomagszűrőben: 5. sz. ábra

Az előző ábra bemutatja, hogy miként halad keresztül egy csomag a csomagszűrőben:
Az ábra bal oldalán érkezik meg egy csomag a hálózat felől.
A PREROUTING alapértelmezett lánc csak abban az esetben létezik, hogyha a NAT bővítménnyel rendelkezünk.
Itt a következő netfilter alrendszereket használhatjuk:
 • conntrack
 • DNAT (Destination NAT)
 • mangle
Azokat a feltételeket adhatjuk meg itt, amelyeket még az útválasztás (routing) előtt kell elvégezni. Például:
 • amennyiben NAT-ot használunk és egy belső hálózatbeli gép adott portját szeretnénk kívülről elérhetővé tenni
 • ha transzparens proxy-t szeretnénk használni
A PREROUTING után érkezik meg a csomag az útválasztáshoz. Itt dől el, hogy a csomag a helyi gépnek szól vagy pedig továbbítani kell a csomagot egy másik interfészen keresztül.
Az INPUT alapértelmezett láncban adhatjuk meg a szabályokat a bejövő kapcsolatokra vonatkozóan. Itt a következő netfilter alrendszereket használhatjuk:
 • conntrack
 • filter
Ahoz, hogy egy felhasználói folyamat (local process) megkaphasson egy csomagot, azt egy INPUT láncbeli szabálynak engedélyeznie kell.
A FORWARD lánc esetében adhatjuk meg a szabályokat az IP továbbításra vonatkozóan. Ahoz, hogy a kernel képes legyen az egyes interfészek között IP továbbításra, ahhoz külön rendszerbeállítás szükséges a /proc fájlrendszeren keresztül:
 echo 1 > /proc/sys/net/ipv4/ip_forward
A FORWARD lánc esetében csak csomagszűrési szabályokat használhatunk.
Amennyiben egy felhasználói folyamat kommunikálni szeretne hálózaton keresztül, akkor rá az OUTPUT láncban lévő szabályok vonatkoznak. A kifelé való kommunikációhoz feltétlenül szükséges az, hogy legyen egy olyan szabály, amely megengedi a kommunikációt. Az OUTPUT esetében bármelyik netfilter alrendszert használhatjuk.
Az OUTPUT és a FORWARD láncon túljutó csomagok ezután a POSTROUTING lánchoz kerülnek. Ez a PREROUTING lánchoz hasonlóan csak akkor létezik, hogy a NAT támogatás elérhető a kernelben. Itt a következő netfilter alrendszereket használhatjuk:
 • conntrack
 • SNAT (Source NAT)
Az alapértelmezett láncok rendelkeznek ún. default policy-val. Itt azt lehet megfogalmazni, hogy mit kell tenni azzal a csomaggal, amelyik egyik korábbi szabályra sem illeszkedik.
Az iptables esetében többféle target (teendő) is megadható. Alapértelmezésként kettő biztosan elérhető:

- ACCEPT: a csomag elfogadásra kerül
- DROP: a csomag eldobásra kerül.

10.7.3. Az iptables parancs használata, paraméterei

Egy iptables parancs több részből állhat:

`iptables [-t table] command chain match [target/jump]

Ahol:

- table: egy táblázat neve, például: nat
- command: egy parancssori kapcsoló
- chain: a lánc neve
- match: az egyezési feltétel megadása
- target: teendő
- jump: egy létező lánc neve, amire ugrani kell

Láncokkal kapcsolatos fontosabb műveletek:

- `-N chain` új lánc létrehozása
- `-X chain` létező lánc törlése
- `-P chain target` alapértelmezett teendő beállítása beépített lánc esetén
- `-L` lánc tartalmának listázása
- `-F chain` láncban lévő szabályok törlése
- `-Z chain` lánchoz tartozó számlázók nullázása

A chain egy adott lánc nevét jelenti, a target pedig a teendőt.

Példák iptables parancsokra:

- `iptables -N allowin`
- `iptables -P FORWARD DROP`
- `iptables -L`
- `iptables -L -t nat`

Az alapértelmezett láncokból van arra lehetőségünk, hogy egy korábban létrehozott saját láncra ugorjunk. Ebben az esetben addig történik a saját láncokban lévő szabályok vizsgálata, amíg egyértelműen el nem dől, hogy el kell fogadni vagy el kell dobni a csomagot. Amennyiben a láncon belül ez nem következik be, akkor az ugrás helye utáni szabály kerül feldolgozásra.

Láncban lévő szabályokkal kapcsolatos műveletek

- `-A rule` új szabály hozzáfüżése
- `-I [num] rule` szabály beszúrása adott pozícióba
- `-R num rule` szabály helyettesítése
- `-D rule | num` szabály törlése
Általános egyezési feltételek megadása:
- **-s [!] address/mask** forrás IP cím/ alhálózati maszk
- **-d [!] address/mask** célpunkt IP cím/ alhálózati maszk
- **-p [!] protocol** szállítási protokoll neve
- **-i [!] interface** bejövő hálózati interfész neve
- **-o [!] interface** kimenő hálózati interfész neve
- **[!] -f** töredékek kezelése

Protokoll függő egyezési feltételek megadása:
TCP esetében:
- **--tcp-flags ...** TCP flag-ek (SYN, RST, ACK, ...) megadása
- **--sport [!] port** forrásport
- **--dport [!] port** célport
- **--tcp-option [!] id** TCP opciók
- **[!] --syn** ahol a SYN flag be van állítva (RST,ACK,FIN pedig nincsen, új TCP kapcsolat kezdeményezésekor)
- **--mss value[: value]** maximális csomagméret

UDP esetében:
- **--sport port** forrásport
- **--dport port** célport

ICMP esetében
- **--icmp-type** ICMP típusának megadása (echo-request, ...)

Kibővített egyezési feltételek (kiterjesztések, bővítmények) használata:
- **-m extension** bővítmény nevének a megadása

state: csomag állapotának vizsgálata
- **-m state --state state-list**

A state-list esetében a NEW (új), ESTABLISHED (felépült), RELATED (valamihez tartozó), INVALID (nem megfelelő) szavak használhatók.

Példák:
- `iptables -A FORWARD -o eth0 -j ACCEPT`
- `iptables -A FORWARD -o eth1 --state RELATED -m state --state ESTABLISHED,RELATED -j ACCEPT`

limit: kapcsolatok számának vizsgálata
- **-m limit**
 - **--limit M/second** másodpercenként M-nél kisebb számok
 - **--limit-burst N** az N-nél kisebb csomagszám esetén

Példa:
- `iptables -A FORWARD -p tcp --syn --m limit --limit 1/s -j ACCEPT`
mac: egyezés vizsgálat MAC cím alapján

- **m mac**

 --mac-source MAC adott MAC cím alapján

`iptables -A INPUT -m mac --mac-source 00:50:56:00:00:02 -j ACCEPT`

recent: egyezés „korábbi” IP címek alapján

- **m recent**

 --name str lista azonosító karakterlánc
 --set IP cím felvétele
 --update utolsó időpont frissítése
 --seconds N időkorlát megadása
 --hitcount M egyezések száma

`iptables -A ssh -m recent --set --name ssh_counter`
`iptables -A ssh -m recent --update --name ssh_counter --seconds 60 --hitcount 2 -j blacklist`

owner: egyezés ID-k alapján

- **m owner**

 --uid-owner userid UID alapján
 --gid-owner groupid GID alapján
 --pid-owner processid PID alapján

`iptables -A OUTPUT -m owner --uid-owner 1000 -j ACCEPT`

multiport: több port felsorolása vesszővel elválasztva

- **m multiport**

 --sport port1,port2,... forrás port
 --dport port1,port2,... cél port

`iptables -A INPUT -p tcp -m multiport --sport 80,443 -j ACCEPT`

IP range: több IP cím megadásának lehetősége

- **m iprange**

 --src-range startIP-endIP forrás IP címek
 --dst-range startIP-endIP cél IP címek

`iptables -A INPUT -p tcp -m iprange --src-range 192.168.30.101-192.168.31.121`

mark: korábban megjelölt csomagokra vonatkozó egyezés
-m mark

--mark ID jelölés azonosító számának megadása

iptables -t mangle -A INPUT -m mark --mark 1 -j DROP

Példa egy otthoni internetkapcsolat védelmére:

iptables -N block
iptables -A block -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A block -m state --state NEW -i ! ppp0 -j ACCEPT
iptables -A block -j DROP
iptables -A INPUT -j block
iptables -A FORWARD -j block

Ebben az esetben saját magunk kezdeményezhetünk kifelé menő kapcsolatokat, viszont kívülről nem építhetnek fel a gépünkhöz irányuló kapcsolatot.
Néhány lehetőség a teendő (target) megadására:

LOG: naplózás
 --log-level 7-0 (debug, info, notice, warning, error, crit, alert, emerg) syslog naplózási „szintek”
 --log-prefix "string" azonosító sztring

iptables -A INPUT -m limit --limit 1/second -j LOG --log-level info --log-prefix "PORTSCAN"

REJECT: eldobás ICMP unreachable, prohibited vagy TCP RST csomag küldésével

iptables -A FORWARD -p tcp --dport 113 -j REJECT --reject-with tcp-reset

RETURN: saját lánc esetében visszatérés a szülő láncba és a következő szabály alkalmazása (egyébként pedig a default policy)

iptables -A allowin -p tcp --dport 80 -j RETURN

SNAT: forrás IP cím átírása a kimenő interfész IP címére
 --to-source startIP-endIP:port1-port2

iptables -A POSTROUTING -s 172.16.0.0/16 -o ppp0 -j SNAT --to-source 192.168.2.2

Amennyiben a ppp0 interfész fix IP címmel rendelkezik, úgy a belső hálózatbeli gépek forgalmát a saját IP címre módosítva megoldható az internetkapcsolat megosztása.

MASQUERADE: az SNAT speciális esete, amikor például a kimenő interfész dinamikusan kapja az IP címet.

 --to-ports port1-port2

iptables -t nat -A POSTROUTING -p tcp -j MASQUERADE --to-ports 2000-3000

DNAT: cél IP cím (port) átírása valamilyen belső IP címre (portra)
 --to-destination startIP-endIP:port1-port2

Használható port-forward-ra, amely esetben a külső interfész felől érkező adott portra érkező csomagokat egy belső hálózaton lévő géphez továbbíthatunk.

iptables -t nat -A PREROUTING -i ppp0 -p tcp --dport 80 -j DNAT --to-destination 172.16.0.3

REDIRECT: a DNAT egy speciális esete, amikor saját port(ok)ra történik a csomagok átirányítása
 --to-ports port1-port2

138
A segítségével készíthetünk transzparens proxy-t:

```bash
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 3128
```

A működéshez szükség van a például a Squid-re, ami a 3128-as TCP porton figyel és be van állítva, hogy képes legyen transzparens módban is működni.

MARK: adott csomagok megjelölése a mark egyezési feltétel számára
--set-mark N adott szám hozzárendelése a csomagokhoz
iptables -t mangle -A PREROUTING -p tcp --dport 22 \
-j MARK --set-mark 2

Szabályok mentése és visszaállítása:

Ahhoz, hogy a szabályaink megmaradjanak ajánlott, hogy mentsük őket, és amikor a gépünk indul automatikusan beállításra kerüljenek.

Az iptables-save parancs a standard kimenetére menti a szabályokat. Az egyes sorokat ugyanazzal a megadási móddal adja vissza, mint amit az iptables parancs esetében használtunk. Annyi a különbség, hogy az iptables parancs nem kerül bele a kimenetbe.

Generated by iptables-save v1.3.6 on Fri Apr 11 22:00:00 2008
*nat
:PREROUTING ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A PREROUTING -d 192.168.2.2 -p tcp --dport 80 -j DNAT \
--to-destination 172.16.0.3
-A POSTROUTING -s 172.16.0.0/255.255.255.0 -o eth0 -j SNAT \
--to-source 192.168.2.2
COMMIT
Completed on Fri Apr 11 22:00:00 2008

Generated by iptables-save v1.3.6 on Fri Apr 11 22:00:00 2008
*filter
:INPUT DROP [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p udp -m udp --dport 53 -j ACCEPT
COMMIT
Completed on Fri Apr 11 22:00:00 2008

Amikor tűzfalat konfigurálunk, akkor az egyik lehetőség az, hogy scriptet írunk, amelybe az egyes parancsokat megadjuk. A másik lehetőség az, amikor a tűzfal konfigurálását úgy oldjuk meg, hogy fájlt szerkesztünk vagy generálunk, és azt állítjuk be az adott szituációban.

10.7.4. A tűzfal működéséhez szükséges kernel opciók

Ahhoz, hogy a kernel szintű tűzfal esetében az egyes netfilter alrendszereket és a megfelelő targeteket használjuk, annak feltétele, hogy a kernelbe fordítsuk be a megfelelő opciókat.

A Networking/Networking options menüpont alatt találhatjuk meg a jegyzetben bemutatott példákhoz szükséges opciókat:

Packet Socket - CONFIG_PACKET
TCP/IP networking - CONFIG_INET
Network packet filtering framework (Netfilter) - CONFIG_NETFILTER

Core Netfilter Configuration
Netfilter connection tracking support - CONFIG NF_CONNTRACK_ENABLED
FTP protocol support - CONFIG NF_CONNTRACK_FTP
Netfilter Xtables support (required for ip_tables) - CONFIG_NETFILTER_XTABLES
"conllimit" match support - CONFIG_NETFILTER_XT_MATCH_CONNLIMIT
"limit" match support - CONFIG_NETFILTER_XT_MATCH_LIMIT
"mac" address match support - CONFIG_NETFILTER_XT_MATCH_MAC
"mark" match support - CONFIG_NETFILTER_XT_MATCH_MARK
Multiple port match support - CONFIG_NETFILTER_XT_MATCH_MULTIPORT
"state" match support - CONFIG_NETFILTER_XT_MATCH_STATE

IP: Netfilter Configuration
IPv4 connection tracking support (required for NAT) - CONFIG NF_CONNTRACK_IPV4
IP tables support (required for filtering/masq/NAT) - CONFIG_IP_NF_IPTABLES
IP range match support - CONFIG_IP_NF_MATCH_IPRANGE
recent match support - CONFIG_IP_NF_MATCH_RECENT
Owner match support - CONFIG_IP_NF_MATCH_OWNER
Packet filtering – CONFIG_IP_NF_FILTER
REJECT target support – CONFIG_IP_NF_TARGET_REJECT
TTL match s. - CONFIG_IP_NF_TARGET_TTL
LOG target support - CONFIG_IP_NF_TARGET_LOG
Full NAT – CONFIG_NF_NAT
MASQUERADE target support – CONFIG_IP_NF_TARGET_MASQUERADE
REDIRECT target support – CONFIG_IP_NF_TARGET_REDIRECT
Packet mangling – CONFIG_IP_NF_MANGLE
11. Irodalomjegyzék

11.1. Könyvek, kiadványok

11.2. Internetes hivatkozások